injective monomorphism - significado y definición. Qué es injective monomorphism
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es injective monomorphism - definición

MODULE SUCH THAT INFINITE SYSTEMS OF LINEAR EQUATIONS CAN BE SOLVED BY SOLVING FINITE SUBSYSTEMS
Algebraically compact; Pure injective module; Pure-injective; Pure-injective module

Injective hull         
NOTION IN ABSTRACT ALGEBRA
Module of finite rank; Injective envelope
In mathematics, particularly in algebra, the injective hull (or injective envelope) of a module is both the smallest injective module containing it and the largest essential extension of it. Injective hulls were first described in .
Injective module         
MATHEMATICAL OBJECT IN ABSTRACT ALGEBRA
Injective test lemma; Injective dimension; Baer's criterion; Self-injective ring
In mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, then any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q.
Injective tensor product         
User:Mgkrupa/Injective tensor product
In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the .

Wikipedia

Algebraically compact module

In mathematics, algebraically compact modules, also called pure-injective modules, are modules that have a certain "nice" property which allows the solution of infinite systems of equations in the module by finitary means. The solutions to these systems allow the extension of certain kinds of module homomorphisms. These algebraically compact modules are analogous to injective modules, where one can extend all module homomorphisms. All injective modules are algebraically compact, and the analogy between the two is made quite precise by a category embedding.