volume elasticity - significado y definición. Qué es volume elasticity
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es volume elasticity - definición

MATHEMATICAL DEFINITION OF POINT ELASTICITY
Point elasticity; Elasticity (mathematics); Semi-elasticity; Semielasticity; Elastic algebra

Linear elasticity         
  • Spherical coordinates (''r'', '' θ'', ''φ'') as commonly used in ''physics'': radial distance ''r'', polar angle ''θ'' ([[theta]]), and azimuthal angle ''φ'' ([[phi]]). The symbol ''ρ'' ([[rho]]) is often used instead of ''r''.
MATHEMATICAL STUDY OF HOW SOLID OBJECTS DEFORM AND BECOME INTERNALLY STRESSED DUE TO PRESCRIBED LOADING CONDITIONS
Elastic wave; Elastic Wave; 3-D elasticity; 3D Elasticity; Elastic waves; 3-D Elasticity; Elastostatic equation; Linear material; Linear elastic material; Elastodynamic equation; Navier-Cauchy equations; Elastodynamics; Beltrami–Michell compatibility equations; Stress wave; Christoffel equation; Beltrami-Michell compatibility equations
Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.
inelastic         
  • Principles of Economics (1890) -- Alfred Marshall
  • Antoine Augustin Cournot
  • Basic Formula for Cross-Price Elasticity
  • Basic Formula for Price Elasticity of Demand
  • Calculating Price Elasticity of Supply
ELASTICITY IN ECONOMICS IS IMPOSSIBLE TO A COUNTRY'S ECONOMY
Market inelasticity; Market elasticity; Inelastic; Price elasticities; Inelastic good; Elastic (economics); Price inelasticity; Elastic product; Inelastic product
¦ adjective
1. (of a material) not elastic.
2. Economics (of demand or supply) insensitive to changes in price or income.
3. Physics (of a collision) involving an overall loss of translational kinetic energy.
Derivatives
inelastically adverb
inelasticity noun
Elasticity (economics)         
  • Principles of Economics (1890) -- Alfred Marshall
  • Antoine Augustin Cournot
  • Basic Formula for Cross-Price Elasticity
  • Basic Formula for Price Elasticity of Demand
  • Calculating Price Elasticity of Supply
ELASTICITY IN ECONOMICS IS IMPOSSIBLE TO A COUNTRY'S ECONOMY
Market inelasticity; Market elasticity; Inelastic; Price elasticities; Inelastic good; Elastic (economics); Price inelasticity; Elastic product; Inelastic product
In economics, elasticity measures the percentage change of one economic variable in response to a percentage change in another. If the price elasticity of the demand of something is -2, a 10% increase in price causes the demand quantity to fall by 20%.

Wikipedia

Elasticity of a function

In mathematics, the elasticity or point elasticity of a positive differentiable function f of a positive variable (positive input, positive output) at point a is defined as

E f ( a ) = a f ( a ) f ( a ) {\displaystyle Ef(a)={\frac {a}{f(a)}}f'(a)}
= lim x a f ( x ) f ( a ) x a a f ( a ) = lim x a f ( x ) f ( a ) f ( a ) a x a = lim x a 1 f ( x ) f ( a ) 1 x a % Δ f ( a ) % Δ a {\displaystyle =\lim _{x\to a}{\frac {f(x)-f(a)}{x-a}}{\frac {a}{f(a)}}=\lim _{x\to a}{\frac {f(x)-f(a)}{f(a)}}{\frac {a}{x-a}}=\lim _{x\to a}{\frac {1-{\frac {f(x)}{f(a)}}}{1-{\frac {x}{a}}}}\approx {\frac {\%\Delta f(a)}{\%\Delta a}}}

or equivalently

E f ( x ) = d log f ( x ) d log x . {\displaystyle Ef(x)={\frac {d\log f(x)}{d\log x}}.}

It is thus the ratio of the relative (percentage) change in the function's output f ( x ) {\displaystyle f(x)} with respect to the relative change in its input x {\displaystyle x} , for infinitesimal changes from a point ( a , f ( a ) ) {\displaystyle (a,f(a))} . Equivalently, it is the ratio of the infinitesimal change of the logarithm of a function with respect to the infinitesimal change of the logarithm of the argument. Generalisations to multi-input-multi-output cases also exist in the literature.

The elasticity of a function is a constant α {\displaystyle \alpha } if and only if the function has the form f ( x ) = C x α {\displaystyle f(x)=Cx^{\alpha }} for a constant C > 0 {\displaystyle C>0} .

The elasticity at a point is the limit of the arc elasticity between two points as the separation between those two points approaches zero.

The concept of elasticity is widely used in economics and Metabolic Control Analysis; see elasticity (economics) and Elasticity coefficient respectively for details.