En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
Na matemática, o logaritmo de um número é o expoente a que outro valor fixo, a base, deve ser elevado para produzir este número. Por exemplo, o logaritmo de 1 000 na base 10 é 3 porque 10 elevado ao cubo é 1 000 (1 000 = 10 × 10 × 10 = 103). De maneira geral, para quaisquer dois números reais b e x, onde b é positivo e b ≠ 1,
O logaritmo da base 10 (b = 10) é chamado de logaritmo comum (ou decimal) e tem diversas aplicações na ciência e engenharia. O logaritmo natural (ou neperiano) tem a constante irracional e (≈ 2,718) como base e é utilizado na matemática pura, principalmente em cálculo diferencial. Ainda há o logaritmo binário, no qual se usa base 2 (b = 2), que é importante para a ciência da computação.
O conceito de logaritmo foi introduzido por John Napier no ano de 1614, a fim de simplificar cálculos, daí a nomenclatura logaritmo neperiano. Ele foi rapidamente adotado por navegadores, cientistas, engenheiros e outros profissionais para facilitar seus cálculos, através do uso de réguas de cálculo e tabelas logarítmicas. Algumas etapas tediosas da multiplicação com vários dígitos podem ser substituídas por consultas a tabelas ou por somas mais simples devido ao fato de o logaritmo de um produto ser o somatório dos logaritmos dos fatores:
A atual noção de logaritmo advém de Leonhard Euler, que o relacionou com a função exponencial no século XVIII. As escalas logarítmicas permitem reduzir grandezas de elevada amplitude para valores menores. Por exemplo, o decibel é uma unidade logarítmica que indica a proporção de uma quantidade física (geralmente energia ou intensidade) em relação a um nível de referência, isto é, estabelece uma razão entre a quantificação da energia liberada e a amplitude. Em química, o potencial hidrogeniônico (pH) mede a acidez e a alcalinidade de soluções aquosas. Os logaritmos ainda são comuns em fórmulas científicas, na teoria da complexidade computacional e de figuras geométricas chamadas fractais. Eles descrevem intervalos musicais, aparecem em fórmulas que contam os números primos, informam vários modelos da psicofísica e podem auxiliar na perícia contábil.
Do mesmo modo como o logaritmo é o inverso da exponenciação, o logaritmo complexo é a função inversa da função exponencial aplicada a números complexos. O logaritmo discreto é outra variante; ele é utilizado na criptografia assimétrica.