En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
Na matemática, uma relação bem-ordenada (ou boa-ordenação) em um conjunto S é uma ordenação total em S com a propriedade de que todo subconjunto não-vazio de S possui um elemento mínimo na ordenação. O conjunto S juntamente com a relação bem-ordenada é chamado de conjunto bem-ordenado.
Todo elemento s, exceto um possível elemento máximo, tem um único sucessor (próximo elemento) a saber, o elemento mínimo do subconjunto de todos os elementos maiores que s. Todo subconjunto que possui um limitante superior possui um supremo. Podem existir elementos (além do elemento mínimo) que não possuem predecessores.
Se ≤ é uma (não-estrita) boa-ordenação, então < é uma boa-ordenação estrita. Uma relação é uma boa-ordenação estrita se e somente se ela for uma ordenação total estrita bem-fundada. A diferença entre boas-ordenações estritas e não-estritas é frequentemente ignorada, uma vez que elas são facilmente interconversíveis.
Se um conjunto é bem-ordenado (ou até se ele meramente admite uma relação bem-fundada), a técnica de prova de indução transfinita pode ser usada para provar que uma dada sentença é verdadeira para todos os elementos do conjunto.
A observação de que os números naturais são bem-ordenados através relação menor que, é comumente chamada de princípio da boa-ordenação (para números naturais).
O teorema da boa-ordenação, que é equivalente ao axioma da escolha, afirma que todo conjunto pode ser bem-ordenado. O teorema da boa-ordenação também é equivalente ao lema de Kuratowski-Zorn.