термин, используемый в различных смыслах. В первоначальном значении в древнегреческой математике анализом называли первую половину метода (вторую половину называли синтезом), с помощью которого устанавливали истинность или ложность утверждения или решали задачу. Сущность анализа сводится к следующему. Требуется проверить справедливость утверждения P1; из P1 следует утверждение P2, из P2 следует утверждение P3 и т.д. Если, продолжая эту процедуру, мы приходим к утверждению Pn, которое противоречит известной истине, то утверждение P1 ложно. Если же мы приходим к утверждению Pn, относительно которого известно, что оно истинно, и ход рассуждений может быть повторен в обратном направлении от Pn к P1, то утверждение P1 истинно. Например, рассматривая неравенство
где a и b - различные положительные числа, можно рассуждать следующим образом.
Анализ. Если неравенство (1) выполняется, то
Если неравенство (2) верно, то
т.е.
Но неравенство (4) истинно, так как a . b.
Синтез. Из неравенства (4) следует (3), из (3) следует (2), из (2) следует (1). Значит, поскольку (4) истинно, неравенство (1) также истинно.
Метод анализа используется для открытия, а метод синтеза - для доказательства. Вместе с тем термины "анализ" и "математический анализ" в настоящее время чаще применяются для обозначения одного из главных разделов математики. В него входят дифференциальное и интегральное исчисления вместе с развившимися из них дисциплинами, такими как теория функций действительного и комплексного переменного, приближения функций, теория дифференциальных и интегральных уравнений, вариационное исчисление, функциональный анализ и т.п. От топологии и геометрии математический анализ отличается использованием алгебраических методов, а от алгебры - использованием таких топологических свойств, как непрерывность. Термин "анализ" используется также и в обыденном смысле, когда речь идет о детальном изучении чего-либо, например, численный анализ (изучение проблем с помощью численных расчетов) или комбинаторный анализ. В геометрии под "аналитикой" принято понимать использование алгебраических методов (см. также АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ). В теории функций комплексного переменного термин "аналитичность" имеет другое значение, присущее только этому разделу математики. См. также МАТЕМАТИЧЕСКИЙ АНАЛИЗ; ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ; ФУНКЦИЯ; ФУНКЦИЙ ТЕОРИЯ.