Гёльдера неравенство - significado y definición. Qué es Гёльдера неравенство
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es Гёльдера неравенство - definición

Гёльдера неравенство; Неравенство Гельдера

Гёльдера неравенство         

для конечных сумм:

для интегралов:

где р > 1 и 1/p + 1/q = 1. Г. н. установлено немецким математиком О. Л. Гёльдером (О. L. Hölder) в 1889. Принадлежит к наиболее употребительным в математическом анализе. При р = q = 2 превращается для конечных сумм в Коши неравенство, а для интегралов - в Буняковского неравенство.

Неравенство Гёльдера         
Нера́венство Гёльдера в функциональном анализе и смежных дисциплинах — это фундаментальное свойство пространств L^p.
Буняковского неравенство         
СВЯЗЫВАЕТ НОРМУ И СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ В ЕВКЛИДОВОМ ИЛИ ГИЛЬБЕРТОВОМ ПРОСТРАНСТВЕ, ИНАЧЕ - НЕРАВЕНСТВО ТРЕУГОЛЬНИКА ДЛЯ НОРМЫ
Неравенство Коши-Буняковского; Неравенство Буняковского; Буняковского неравенство; Неравенство Шварца; Неравенство Коши — Буняковского — Шварца

одно из важнейших неравенств математического анализа, утверждающее, что

установлено В. Я. Буняковским (См. Буняковский). Это неравенство аналогично элементарному алгебраическому Коши неравенству (См. Коши неравенство):

и может быть получено из последнего посредством перехода к пределу. Нередко в математической литературе Б. н. ошибочно называется неравенством Шварца - по имени Г. А. Шварца. Однако В. Я. Буняковский опубликовал свою работу о неравенствах ещё в 1859, тогда как в работах Шварца то же неравенство появляется не ранее 1884 (без ссылок на Буняковского).

Лит.: Bounjakowsky W., Sur quelques inégalités concernant les intégrates ordinaires et les intégrates aux différences finies (Lu ie 29 avril 1859), "Mémoires de l'Académie des sciences de St.-Pétersbourg. 7 série", 1859, t. 1, № 9.

Wikipedia

Неравенство Гёльдера

Нера́венство Гёльдера в функциональном анализе и смежных дисциплинах — это фундаментальное свойство пространств L p {\displaystyle L^{p}} .