ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ - significado y definición. Qué es ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ - definición

Фурье спектроскопия; Спектроскопия Фурье
  • Схема оптического Фурье-спектрометра.<br />
Фурье-спектрометр представляет собой [[интерферометр Майкельсона]], в котором одно из зеркал выполнено подвижным, что позволяет варьировать разницу хода лучей. Смещение зеркала производится механическим приводом, управляемым ЭВМ.<br />
1 — Источник белого света или исследуемый источник;<br />
2 — Линза коллиматора;<br />
3 — Кювета с исследуемым веществом;<br />
4 — Опорный (эталонный) лазер;<br />
5 — Вспомогательные зеркала опорного пучка от лазера;<br />
6 — Фотоприёмник опорного пучка;<br />
7 — Неподвижное зеркало;<br />
8 — Подвижное зеркало;<br />
9 — Механический привод подвижного зеркала;<br />
10 — Объектив фотоприёмника;<br />
11 — Фотоприёмник;<br />
12 — Управляющий и обрабатывающий интерферограмму компьютер;<br />
13 — Светоделительная пластина.
  • радикалов]] — [[полосы Свана]].

ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ      
раздел оптической спектроскопии, в основе которого лежит использование лазерного излучения. С помощью лазеров удается стимулировать определенные квантовые переходы в атомах и молекулах. Преимущества лазерной спектроскопии - высокое спектральное разрешение, высокая чувствительность регистрации атомов и молекул в веществе, возможность исследования малых количеств вещества и осуществления спектрального анализа на значительных расстояниях (напр., в атмосфере).
Фотоэлектронная спектроскопия         

метод изучения строения вещества, основанный на измерении энергетических спектров электронов, вылетающих при фотоэлектронной эмиссии. Согласно закону Эйнштейна, сумма энергии связи вылетающего электрона (работы выхода (См. Работа выхода)) и его кинетическая энергии равна энергии падающего фотона hν (h - Планка постоянная, ν - частота падающего излучения). По спектру электронов можно определить энергии связи электронов и их уровни энергии в исследуемом веществе.

В Ф. с. применяются монохроматическое рентгеновское или ультрафиолетовое излучения с энергией фотонов от десятков тысяч до десятков эв (что соответствует длинам волн излучения от десятых долей Å до сотен Å). Спектр фотоэлектронов исследуют при помощи электронных спектрометров высокого разрешения (достигнуто разрешение до десятых долей эв в рентгеновской области и до сотых долей эв в ультрафиолетовой области).

Метод Ф. с. применим к веществу в газообразном, жидком и твёрдом состояниях и позволяет исследовать как внешние, так и внутренние электронные оболочки атомов и молекул, уровни энергии электронов в твёрдом теле (в частности, распределение электронов в зоне проводимости). Для молекул энергии связи электронов во внутренних оболочках образующих их атомов зависят от типа химической связи (химические сдвиги), поэтому Ф. с. успешно применяется в аналитической химии для определения состава вещества и в физической химии для исследования химической связи. В химии метод Ф. с. известен под название ЭСХА - электронная спектроскопия для химического анализа (ESCA - electronic spectroscopy for chemical analysis).

Лит.: Вилесов Ф. И., Курбатов Б. Л., Теренин А. Н., "Докл. АН СССР", 1961, т. 138, с. 1329-32; Электронная спектроскопия, пер. с англ., М., 1971.

М. А. Ельяшевич.

Фотоэлектронная спектроскопия         
Фотоэлектронная спектроскопия — метод изучения строения вещества, основанный на измерении энергетических спектров электронов, вылетающих при фотоэлектронной эмиссии. Метод фотоэлектронной спектроскопии применим к веществу в газообразном, жидком и твёрдом состояниях, и позволяет исследовать как внешние, так и внутренние электронные оболочки атомов и молекул, уровни энергии электронов в твёрдом теле (в частности, распределение электронов в зоне проводимости).

Wikipedia

Фурье-спектроскопия

Фурье́-спектроскопи́я (англ. Fourier-transform spectroscopy) — совокупность методов измерений спектров различной природы (оптических, ЯМР, ЭПР и др.), в которых спектр вычисляется не по интенсивности сигнала, как например, в призменных спектроскопах, а по отклику во временной (ЯМР, ЭПР, масс-спектроскопия) или пространственной области (для оптических спектроскопов).

Методы Фурье-спектроскопии в пространственной области удобны и часто применяются в оптической спектроскопии, спектроскопии в инфракрасной области (FTIR, FT-NIRS).

Также используются в ЯМР-спектроскопии, масс-спектрометрии и спектрометрии ЭПР.

Термин Фурье-спектроскопия подчёркивает, что для получения спектра по временному или пространственному отклику спектроскопа требуется произвести Фурье-преобразование. Восстановление спектра с помощью преобразования Фурье требует большой вычислительной мощности и производится с помощью ЭВМ.

В оптических Фурье-спектрометрах используются интерферометры, в которых измеряется интерферограмма двух пучков исследуемого излучения с переменной оптической разностью хода этих пучков. Для получения спектра при измерении интерференции разность хода лучей плавно изменяют, обычно с помощью подвижного зеркала. При изменении разности хода лучей в результате интерференции интенсивность сигнала фотоприёмника изменяется. В опыте записывается сигнал фотоприёмника в зависимости от координаты подвижного зеркала. Массив этих данных представляет собой Фурье-образ спектра в зависимости от разности хода пучков (функцию распределения энергии излучения по частоте) согласно теореме Хинчина — Колмогорова.

Ejemplos de uso de ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ
1. Лазерная спектроскопия в дополнение к синхротронному и нейтронному излучению - этот набор экспериментальных средств физики твердого тела - позволяет идентифицировать не только положение отдельных атомов в живой клетке, исследовать ее свойства, но и локально воздействовать на группы молекул, входящих в ее состав.
¿Qué es ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ? - significado y definición