En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
Спин (от англ. spin, букв. — «вращение, вращать(-ся)») — собственный момент импульса элементарных частиц, имеющий как квантовую, так и классическую природу и тесно связанный с представлениями группы вращений и группы Лоренца (классические аспекты спина см. в книгах H.C. Corben, Classical and Quantum Theories of Spinning Particles (Holden-Day, San Francisco, 1968), Alexei Deriglazov, Classical Mechanics (Second Edition, Springer 2017), Пенроуз и Риндлер, Спиноры и пространство-время). Спином называют также собственный момент импульса атомного ядра или атома; в этом случае спин определяется как векторная сумма (вычисленная по правилам сложения моментов в квантовой механике) спинов элементарных частиц, образующих систему, и орбитальных моментов этих частиц, обусловленных их движением внутри системы.
Спин измеряется в единицах ħ (приведённой постоянной Планка, или постоянной Дирака) и равен ħJ, где J — характерное для каждого сорта частиц целое (в том числе нулевое) или полуцелое положительное число — так называемое спиновое квантовое число (оно есть число, характеризующее представления группы вращений и группы Лоренца, то есть сколько в нём собственно квантовости и сколько неквантовости, сейчас неизвестно), которое обычно называют просто спином (одно из квантовых чисел). Спин свободной частицы измерить нельзя, так как для измерения требуется внешнее магнитное поле, а оно делает частицу несвободной.
В связи с этим говорят о целом или полуцелом спине частицы. Полуцелый спин фундаментальнее, так как "из него" можно построить целый спин, но обратное невозможно (см. книгу Пенроуза и Риндлера).
Существование спина в системе тождественных взаимодействующих частиц является причиной нового квантово-механического явления, не имеющего аналогии в классической механике: обменного взаимодействия.
Вектор спина является единственной величиной, характеризующей ориентацию частицы в квантовой механике. Из этого положения следует, что: при нулевом спине у частицы не может существовать никаких векторных и тензорных характеристик; векторные свойства частиц могут описываться только аксиальными векторами; частицы могут иметь магнитные дипольные моменты и не могут иметь электрических дипольных моментов; частицы могут иметь электрический квадрупольный момент и не могут иметь магнитный квадрупольный момент; отличный от нуля квадрупольный момент возможен лишь у частиц при спине, не меньшем единицы.
Спиновый момент электрона или другой элементарной частицы, однозначно отделённый от орбитального момента, никогда не может быть определён посредством опытов, к которым применимо классическое понятие траектории частицы.
Число компонент волновой функции, описывающей элементарную частицу в квантовой механике, растёт с ростом спина элементарной частицы. Элементарные частицы со спином описываются однокомпонентной волновой функцией (скаляр), со спином описываются двухкомпонентной волновой функцией (спинор), со спином описываются трёхкомпонентной волновой функцией (вектор), со спином описываются пятикомпонентной волновой функцией (тензор).