ЦИЛИНДРИЧЕСКИЕ КООРДИНАТЫ - significado y definición. Qué es ЦИЛИНДРИЧЕСКИЕ КООРДИНАТЫ
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es ЦИЛИНДРИЧЕСКИЕ КООРДИНАТЫ - definición

Проективные координаты; Однородные координаты

ЦИЛИНДРИЧЕСКИЕ КООРДИНАТЫ      
точки М , три числа r, ?, z, связанные с декартовыми координатами x, y, z этой точки формулами:x = rcosz,y = rsinz,z = z.
Цилиндрические координаты      

точки М, три числа r, θ, z, характеризующие положение точки в пространстве (см. рис.). Наименование Ц. к. связано с тем, что координатная поверхность (см. Координаты) r = const является цилиндром, образующие которого параллельны Oz. Ц. к. и прямоугольные координаты х, у, z точки М связаны соотношениями: х = rcosθ, у = rsinθ, z = z.

К ст. Цилиндрические координаты.

Цилиндрические параболические координаты         
  • Координатные поверхности в координатах параболического цилиндра.
Цилиндрические параболические координаты (координаты параболического цилиндра) (u,\;v,\;z) — система координат, обобщающая параболические координаты на трёхмерный случай путём добавления третьей (декартовой) координаты \ z, то есть аппликаты.

Wikipedia

Однородная система координат

Однородные координаты ― система координат, используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.

Однородные координаты обладают тем свойством, что определяемый ими объект не меняется при умножении всех координат на одно и то же ненулевое число. Из-за этого количество координат, необходимое для представления точек, всегда на одну больше, чем размерность пространства, в котором эти координаты используются. Например, для представления точки на прямой в одномерном пространстве необходимы 2 координаты и 3 координаты для представления точки на плоскости в двумерном пространстве. В однородных координатах возможно представить даже точки, находящиеся в бесконечности.

Введены Плюккером в качестве аналитического подхода к принципу двойственности Жергонна — Понселе.

¿Qué es ЦИЛИНДРИЧЕСКИЕ КООРДИНАТЫ? - significado y definición