ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД - significado y definición. Qué es ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД - definición

ТИП ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА В ТРЁХМЕРНОМ ЕВКЛИДОВОМ ПРОСТРАНСТВЕ
Гиперболический параболоид; Эллиптический параболоид; Параболический гиперболоид; Параболоиды; Гипар
  • Гиперболический параболоид при <math>a=b=1</math>
  • Гиперболический параболоид как линейчатая поверхность
  • Гиперболический параболоид
  • Параболоид вращения
  • Форма из дерева, иллюстрирующая гиперболический параболоид
  • Эллиптический параболоид при <math>a=b=1</math>

ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД         
один из двух типов параболоидов.
Эллиптический параболоид         

один из двух видов параболоидов (См. Параболоиды).

ГИПЕРБОЛИЧЕСКИЙ ПАРАБОЛОИД         
один из двух типов параболоидов.

Wikipedia

Параболоид

Параболо́ид ― тип поверхности второго порядка в трёхмерном евклидовом пространстве.

Параболоид может быть охарактеризован как незамкнутая нецентральная (то есть не имеющая центра симметрии) поверхность второго порядка.

Канонические уравнения параболоида в декартовых координатах:

z = t x 2 + u y 2 , {\displaystyle z=tx^{2}+uy^{2},}
где t {\displaystyle t} и u {\displaystyle u}  — действительные числа, не равные нулю одновременно.

При:

  • t {\displaystyle t} и u {\displaystyle u} одного знака — эллиптический параболоид; частный случай t = u {\displaystyle t=u} параболоид вращения;
  • t {\displaystyle t} и u {\displaystyle u} разных знаков — гиперболический параболоид;
  • t {\displaystyle t} или u {\displaystyle u} равен нулю, — цилиндрический параболоид или, чаще параболический цилиндр.

Cечения параболоида вертикальными (параллельными оси z {\displaystyle z} ) плоскостями произвольного положения — параболы.

Сечения параболоида горизонтальными плоскостями, параллельными плоскости x ,   y {\displaystyle x,\ y} для эллиптического параболоида — эллипсы, для параболоида вращения эти пересечения — окружности, когда такое пересечение существует.

Сечения для гиперболического параболоида — гиперболы.

В частных случаях сечением может оказаться прямая или пара прямых (для гиперболического параболоида; для параболического цилиндра прямые будут параллельны) или вырождаться в одну точку (для эллиптического параболоида).

¿Qué es ЭЛЛИПТИЧЕСКИЙ ПАРАБОЛОИД? - significado y definición