координаты {геом } {астр } - significado y definición. Qué es координаты {геом } {астр }
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es координаты {геом } {астр } - definición

Проективные координаты; Однородные координаты

Сферические координаты         
НАБОР ИЗ 3 ЧИСЕЛ, ОПРЕДЕЛЯЮЩИХ ПОЛОЖЕНИЕ ТОЧКИ НА НЕКОЙ СФЕРЕ
Сферические координаты

точки М, три числа r, θ, φ, которые определяются следующим образом. Через фиксированную точку О (рис.) проводятся три взаимно оси Ox, Оу, Oz. Число r равно расстоянию от точки О до точки М, θ представляет собой угол между вектором и положительным направлением оси Oz, φ - угол, на который надо повернуть против часовой стрелки положительную полуось Ox до совпадения с вектором (N - проекция точки М на плоскость хОу). С. к. точки М зависят, таким образом, от выбора точки О и трёх осей Ox, Оу, Oz. Связь С. к. с прямоугольными декартовыми координатами (См. Координаты) устанавливается следующими формулами:

, , .

С. к. имеют большое применение в математике и её приложениях к физике и технике.

Рис. к ст. Сферические координаты.

СФЕРИЧЕСКИЕ КООРДИНАТЫ         
НАБОР ИЗ 3 ЧИСЕЛ, ОПРЕДЕЛЯЮЩИХ ПОЛОЖЕНИЕ ТОЧКИ НА НЕКОЙ СФЕРЕ
Сферические координаты
точки M , три числа r, ?, ?, связанные с декартовыми координатами x, y, z этой точки формулами: x = r sin? cos?, y = r sin? sin?, z = r cos?. Сферические координаты имеют большое применение в математике и ее приложениях.
Сферическая система координат         
НАБОР ИЗ 3 ЧИСЕЛ, ОПРЕДЕЛЯЮЩИХ ПОЛОЖЕНИЕ ТОЧКИ НА НЕКОЙ СФЕРЕ
Сферические координаты
Сферическая система координат — трёхмерная система координат, в которой каждая точка пространства определяется тремя числами (r,\;\theta,\;\varphi), где r — расстояние до начала координат (радиальное расстояние), а \theta и \varphi — зенитный и азимутальный углы соответственно.

Wikipedia

Однородная система координат

Однородные координаты ― система координат, используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.

Однородные координаты обладают тем свойством, что определяемый ими объект не меняется при умножении всех координат на одно и то же ненулевое число. Из-за этого количество координат, необходимое для представления точек, всегда на одну больше, чем размерность пространства, в котором эти координаты используются. Например, для представления точки на прямой в одномерном пространстве необходимы 2 координаты и 3 координаты для представления точки на плоскости в двумерном пространстве. В однородных координатах возможно представить даже точки, находящиеся в бесконечности.

Введены Плюккером в качестве аналитического подхода к принципу двойственности Жергонна — Понселе.