sensitive compartmented information - significado y definición. Qué es sensitive compartmented information
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es sensitive compartmented information - definición

Locality sensitive hashing

Dig         
dig (сокращение от «domain information groper») — утилита (DNS-клиент), предоставляющая пользователю интерфейс командной строки для обращения к системе DNS. Позволяет задавать различные типы запросов и запрашивать произвольно указываемые сервера.
Персональный информационный менеджер         
Персональный информационный менеджер, ПИМ () — компьютерная программа, служащая для облегчения работы с разного рода личной информацией. В простейшем случае это программа, выполняющая функции персонального органайзера. Более сложные программы имеют дополнительные функции, позволяющие вести совместное планирование и организовывать совместную работу над проектами (Groupware).
Call Detail Record         
Call Detail Record (сокр.  — Подробная Запись о Вызове (ПЗВ); возможна расшифровка Charging Data Records — записи данных о списаниях) в телекоммуникационной сфере — сервис, обеспечивающий журналирование работы телекоммуникационного оборудования, такого как коммутатор/АТС, IP-АТС, VoIP-шлюз, Виртуальная АТС и т.

Wikipedia

Locality-sensitive hashing

Locality-sensitive hashing (LSH) — вероятностный метод понижения размерности многомерных данных. Основная идея состоит в таком подборе хеш-функций для некоторых измерений, чтобы похожие объекты с высокой степенью вероятности попадали в одну корзину. Один из способов борьбы с «проклятием размерности» при поиске и анализе многомерных данных, которое заключается в том, что при росте размерности исходных данных поиск по индексу ведёт себя хуже, чем последовательный просмотр. Метод позволяет строить структуру для быстрого приближённого (вероятностного) поиска n-мерных векторов, «похожих» на искомый шаблон.

LSH является одним из наиболее популярных на сегодняшний день приближённых алгоритмов поиска ближайших соседей (Approximate Nearest Neighbor, ANN). LSH в этом подходе отображает множество точек в высокоразмерном пространстве в множество ячеек, т. е. в хеш-таблицу. В отличие от традиционных хешей, LSH обладает свойством чувствительности к местоположению (locality-sensitive hash), благодаря чему способен помещать соседние точки в одну и ту же ячейку.

Преимуществами LSH являются: 1) простота использования; 2) строгая теория, подтверждающая хорошую производительность алгоритма; 3) LSH совместим с любой нормой L p {\displaystyle L_{p}} при 0 < p 2 {\displaystyle 0<p\leq 2} . LSH можно использовать с евклидовой метрикой и с манхэттенским расстоянием. Существуют также варианты для расстояния Хэмминга и косинусного коэффициента.

¿Qué es Dig? - significado y definición