normalizer$53726$ - traduction vers allemand
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

normalizer$53726$ - traduction vers allemand

SUBGROUP OF A GROUP G THAT EACH LEAVES INVARIANT EACH ELEMENT OF A GIVEN SUBSET OF A G-SET
Normalizer; Centralizer; Commutant; Self-normalizing subgroup; Centraliser; Normaliser; Self-normalizing; Self-normalising; Centralizer & normalizer; N/C theorem; Centralizer (ring theory); C closed subgroup; C-closed subgroup; C-closed subgroups; Centralizer (Lie algebra); Normalizer (group theory)

normalizer      
n. Normalisierer

Wikipédia

Centralizer and normalizer

In mathematics, especially group theory, the centralizer (also called commutant) of a subset S in a group G is the set C G ( S ) {\displaystyle \operatorname {C} _{G}(S)} of elements of G that commute with every element of S, or equivalently, such that conjugation by g {\displaystyle g} leaves each element of S fixed. The normalizer of S in G is the set of elements N G ( S ) {\displaystyle \mathrm {N} _{G}(S)} of G that satisfy the weaker condition of leaving the set S G {\displaystyle S\subseteq G} fixed under conjugation. The centralizer and normalizer of S are subgroups of G. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets S.

Suitably formulated, the definitions also apply to semigroups.

In ring theory, the centralizer of a subset of a ring is defined with respect to the semigroup (multiplication) operation of the ring. The centralizer of a subset of a ring R is a subring of R. This article also deals with centralizers and normalizers in a Lie algebra.

The idealizer in a semigroup or ring is another construction that is in the same vein as the centralizer and normalizer.