cycle index counter - traduction vers arabe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

cycle index counter - traduction vers arabe

Cycle index series; Structor
  • Schematic illustration of a combinatorial species structure on five elements by using a Labelle diagram
  • center
  • center
  • center

cycle index counter      
عداد دورة التعليمات المكررة في البرنامج
INDICES         
WIKIMEDIA DISAMBIGUATION PAGE
Indice; Indices; Indexing; Index (computer science); Index (mathematics); Indexes; The Index; Indexed; Index form; Index (disambiguation); User:Incnis Mrsi/External index; Index (information technology); Index (algebra); Types of indices; U+0084

ألاسم

بَيَان ; ثَبَت ; ثَبْت ; دَلِيل ; فِهْرِس ; فِهْرسْت ; قائِمَة ; كَشَّاف ; كَشْف ; لائِحَة

الفعل

جَدْوَلَ ; فَهْرَسَ ; كَشَّفَ

indexing         
WIKIMEDIA DISAMBIGUATION PAGE
Indice; Indices; Indexing; Index (computer science); Index (mathematics); Indexes; The Index; Indexed; Index form; Index (disambiguation); User:Incnis Mrsi/External index; Index (information technology); Index (algebra); Types of indices; U+0084
الفهرسة، التقسيم

Définition

Geiger counter
(Geiger counters)
A Geiger counter is a device which finds and measures radioactivity.
N-COUNT

Wikipédia

Combinatorial species

In combinatorial mathematics, the theory of combinatorial species is an abstract, systematic method for deriving the generating functions of discrete structures, which allows one to not merely count these structures but give bijective proofs involving them. Examples of combinatorial species are (finite) graphs, permutations, trees, and so on; each of these has an associated generating function which counts how many structures there are of a certain size. One goal of species theory is to be able to analyse complicated structures by describing them in terms of transformations and combinations of simpler structures. These operations correspond to equivalent manipulations of generating functions, so producing such functions for complicated structures is much easier than with other methods. The theory was introduced, carefully elaborated and applied by Canadian researchers around André Joyal.

The power of the theory comes from its level of abstraction. The "description format" of a structure (such as adjacency list versus adjacency matrix for graphs) is irrelevant, because species are purely algebraic. Category theory provides a useful language for the concepts that arise here, but it is not necessary to understand categories before being able to work with species.

The category of species is equivalent to the category of symmetric sequences in finite sets.