Reachability - traduction vers Anglais
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Reachability - traduction vers Anglais

GRAPH THEORY
Reachable; Graph reachability; Kameda's algorithm; Thorup's algorithm; Reachability matrix
  • A suitable digraph for Kameda's method with <math>s</math> and <math>t</math> added.
  • The same graph as above after Kameda's algorithm has run, showing the DFS labels for each vertex

reachability         
(n.) = accesibilidad, facilidad de acceso, facilidad de alcance
Ex: Most important factors were reachability of the udder for the piglets and reachability of the sow and piglets for the stockman.
Reachability         
Asequibilidad
reachable         
(adj.) = alcanzable, conseguible, obtenible
Ex: I think this is a reachable goal, but to attain it we must first understand where and why the library user goes wrong under our present system.
----
* unreachable = inalcanzable, inaccesible, inasequible, irrealizable

Définition

Reachable
·adj Being within reach.

Wikipédia

Reachability

In graph theory, reachability refers to the ability to get from one vertex to another within a graph. A vertex s {\displaystyle s} can reach a vertex t {\displaystyle t} (and t {\displaystyle t} is reachable from s {\displaystyle s} ) if there exists a sequence of adjacent vertices (i.e. a walk) which starts with s {\displaystyle s} and ends with t {\displaystyle t} .

In an undirected graph, reachability between all pairs of vertices can be determined by identifying the connected components of the graph. Any pair of vertices in such a graph can reach each other if and only if they belong to the same connected component; therefore, in such a graph, reachability is symmetric ( s {\displaystyle s} reaches t {\displaystyle t} iff t {\displaystyle t} reaches s {\displaystyle s} ). The connected components of an undirected graph can be identified in linear time. The remainder of this article focuses on the more difficult problem of determining pairwise reachability in a directed graph (which, incidentally, need not be symmetric).