definite divergence - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

definite divergence - traduction vers russe

PROPERTY OF A MATHEMATICAL MATRIX
Positive-definite Matrix; Positive-semidefinite matrix; Negative-semidefinite matrix; Negative-definite matrix; Indefinite matrix; Non-negative definite matrix; Non-negative-definite matrix; Positive definite matrix; Negative definite matrix; Positive semidefinite matrix; Negative semidefinite matrix; Positive semi-definite matrix; Definite positive matrix; Symmetric positive definite; Spd matrix; Non-negative definite; Nonnegative-definite matrix; Nonnegative-definite; Positive-definite matrices; Nonnegative-definite matrices; Positive definite matrices; Nonnegative definite; Positive-definite matrix; Positive semidefinite matrices; Negative semi-definite matrix; Definiteness of a matrix; Definite symmetric matrix

definite divergence      

математика

определённая расходимость

divergence         
VECTOR DIFFERENTIAL OPERATOR MEASURING THE SOURCE OR SINK AT A GIVEN POINT
Divergency; Spherical divergence; Div operator; Divergence of a vector field
сущ.
1) дивергенция; движение от центра;
2) разветвление в развитии.
semi-definite         
QUADRATIC FORM THAT IS EITHER GREATER THEN 0 EXCEPT FOR 0 OR LESS THEN 0 EXCEPT FOR 0
Negative semidefinite; Definite bilinear form; Semidefinite; Semi-definite form; Positive definite form; Positive-definite form; Semidefinite bilinear form; Positive definite bilinear form; Positive-definite bilinear form; Positive definite quadratic form; Indefinite quadratic form; Positive-definite quadratic form; Indefinite form; Positive Definite Quadratic Form; Negative semi-definite; Semidefinite quadratic form; Negative-definite quadratic form; Negative definite quadratic form; Positive semidefinite quadratic form; Negative semidefinite quadratic form; Semi-definite quadratic form; Positive semi-definite quadratic form; Negative semi-definite quadratic form; Negative-definite bilinear form; Negative definite bilinear form; Negative-definite form; Negative definite form; Semidefinite form; Semi-definite bilinear form; Positive semidefinite bilinear form; Negative semidefinite bilinear form; Negative semi-definite bilinear form; Positive semi-definite bilinear form; Positive semidefinite form; Negative semidefinite form; Negative semi-definite form; Positive semi-definite form; Semi-definite

общая лексика

квазиопределенный

полуопределенный

Définition

Divergency
·noun Disagreement; difference.
II. Divergency ·noun A receding from each other in moving from a common center; the state of being divergent; as, an angle is made by the divergence of straight lines.

Wikipédia

Definite matrix

In mathematics, a symmetric matrix M {\displaystyle M} with real entries is positive-definite if the real number z T M z {\displaystyle z^{\textsf {T}}Mz} is positive for every nonzero real column vector z , {\displaystyle z,} where z T {\displaystyle z^{\textsf {T}}} is the transpose of z {\displaystyle z} . More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number z M z {\displaystyle z^{*}Mz} is positive for every nonzero complex column vector z , {\displaystyle z,} where z {\displaystyle z^{*}} denotes the conjugate transpose of z . {\displaystyle z.}

Positive semi-definite matrices are defined similarly, except that the scalars z T M z {\displaystyle z^{\textsf {T}}Mz} and z M z {\displaystyle z^{*}Mz} are required to be positive or zero (that is, nonnegative). Negative-definite and negative semi-definite matrices are defined analogously. A matrix that is not positive semi-definite and not negative semi-definite is sometimes called indefinite.

A matrix is thus positive-definite if and only if it is the matrix of a positive-definite quadratic form or Hermitian form. In other words, a matrix is positive-definite if and only if it defines an inner product.

Positive-definite and positive-semidefinite matrices can be characterized in many ways, which may explain the importance of the concept in various parts of mathematics. A matrix M is positive-definite if and only if it satisfies any of the following equivalent conditions.

  • M is congruent with a diagonal matrix with positive real entries.
  • M is symmetric or Hermitian, and all its eigenvalues are real and positive.
  • M is symmetric or Hermitian, and all its leading principal minors are positive.
  • There exists an invertible matrix B {\displaystyle B} with conjugate transpose B {\displaystyle B^{*}} such that M = B B . {\displaystyle M=B^{*}B.}

A matrix is positive semi-definite if it satisfies similar equivalent conditions where "positive" is replaced by "nonnegative", "invertible matrix" is replaced by "matrix", and the word "leading" is removed.

Positive-definite and positive-semidefinite real matrices are at the basis of convex optimization, since, given a function of several real variables that is twice differentiable, then if its Hessian matrix (matrix of its second partial derivatives) is positive-definite at a point p, then the function is convex near p, and, conversely, if the function is convex near p, then the Hessian matrix is positive-semidefinite at p.

Some authors use more general definitions of definiteness, including some non-symmetric real matrices, or non-Hermitian complex ones.

Traduction de &#39definite divergence&#39 en Russe