fundamental theorem of algebra - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

fundamental theorem of algebra - traduction vers russe

EVERY POLYNOMIAL HAS A REAL OR COMPLEX ROOT
Fundamental Theorem of Algebra; The fundamental theorem of algebra; D'Alembert's theorem
  • 150x150px

fundamental theorem of algebra         
основная теорема алгебры
fundamental lemma         
RESULT CONSIDERED TO BE THE MOST CENTRAL AND THE IMPORTANT ONE IN SOME FIELD
List of fundamental theorems; Fundamental Theorem; Fundamental Theorems; Fundamental lemma; Fundamental equation; Fundamental theorem; Fundamental theorems

математика

фундаментальная лемма

fundamental theorem         
RESULT CONSIDERED TO BE THE MOST CENTRAL AND THE IMPORTANT ONE IN SOME FIELD
List of fundamental theorems; Fundamental Theorem; Fundamental Theorems; Fundamental lemma; Fundamental equation; Fundamental theorem; Fundamental theorems

математика

основная теорема

Définition

грип
ГРИП, ГРИПП, гриппа, ·муж. (·франц. grippe) (мед.). Инфекционная болезнь - катарральное воспаление дыхательных путей, сопровождаемое лихорадочным состоянием; то же, что инфлуэнца
.

Wikipédia

Fundamental theorem of algebra

The fundamental theorem of algebra, also known as d'Alembert's theorem, or the d'Alembert–Gauss theorem, states that every non-constant single-variable polynomial with complex coefficients has at least one complex root. This includes polynomials with real coefficients, since every real number is a complex number with its imaginary part equal to zero.

Equivalently (by definition), the theorem states that the field of complex numbers is algebraically closed.

The theorem is also stated as follows: every non-zero, single-variable, degree n polynomial with complex coefficients has, counted with multiplicity, exactly n complex roots. The equivalence of the two statements can be proven through the use of successive polynomial division.

Despite its name, there is no purely algebraic proof of the theorem, since any proof must use some form of the analytic completeness of the real numbers, which is not an algebraic concept. Additionally, it is not fundamental for modern algebra; its name was given at a time when algebra was synonymous with theory of equations.

Traduction de &#39fundamental theorem of algebra&#39 en Russe