Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:
общая лексика
беспримесный полупроводник
полупроводник чистый
общая лексика
беспримесный проводник
общая лексика
полупроводниковое устройство
электронное устройство, основные характеристики которого обусловлены прохождением тока через полупроводник
полупроводниковый прибор
Смотрите также
An intrinsic (pure) semiconductor, also called an undoped semiconductor or i-type semiconductor, is a pure semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities. In intrinsic semiconductors the number of excited electrons and the number of holes are equal: n = p. This may be the case even after doping the semiconductor, though only if it is doped with both donors and acceptors equally. In this case, n = p still holds, and the semiconductor remains intrinsic, though doped. This mean that some conductors are both intrinsic as well as extrinsic but only if n (electron donor dopant/excited electrons) is equal to p (electron acceptor dopant/vacant holes that act as positive charges).
The electrical conductivity of chemically pure semiconductors can still be affected by crystallographic defects of technological origin (like vacancies), some of which can behave similar to dopants. Their effect can often be neglected, though, and the number of electrons in the conduction band is then exactly equal to the number of holes in the valence band. The conduction of current of intrinsic semiconductor is enabled purely by electron excitation across the band-gap, which is usually small at room temperature except for narrow-bandgap semiconductors, like Hg
0.8Cd
0.2Te.
The conductivity of a semiconductor can be modeled in terms of the band theory of solids. The band model of a semiconductor suggests that at ordinary temperatures there is a finite possibility that electrons can reach the conduction band and contribute to electrical conduction. A silicon crystal is different from an insulator because at any temperature above absolute zero, there is a non-zero probability that an electron in the lattice will be knocked loose from its position, leaving behind an electron deficiency called a "hole". If a voltage is applied, then both the electron and the hole can contribute to a small current flow.