quasi-ordering - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

quasi-ordering - traduction vers russe

REFLEXIVE AND TRANSITIVE BINARY RELATION
Preordered set; Quasi-ordering; Quasi-order; Quasiorder; Quasi order; Precongruence; Preorder (mathematics); Strict preorder
  • //]]4 on the [[natural numbers]]. Due to the cycles, ''R'' is not anti-symmetric. If all numbers in a cycle are considered equivalent, a partial, even linear, order<ref>on the set of numbers divisible by 4</ref> is obtained. See first example below.

quasi-ordering         

общая лексика

квази-упорядоченность

quasi-ordering         
квазиупорядочение
preordered set         

математика

предупорядоченное множество

Définition

Preorder
·vt To order to arrange beforehand; to Foreordain.

Wikipédia

Preorder

In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. Preorders are more general than equivalence relations and (non-strict) partial orders, both of which are special cases of a preorder: an antisymmetric (or skeletal) preorder is a partial order, and a symmetric preorder is an equivalence relation.

The name preorder comes from the idea that preorders (that are not partial orders) are 'almost' (partial) orders, but not quite; they are neither necessarily antisymmetric nor asymmetric. Because a preorder is a binary relation, the symbol {\displaystyle \,\leq \,} can be used as the notational device for the relation. However, because they are not necessarily antisymmetric, some of the ordinary intuition associated to the symbol {\displaystyle \,\leq \,} may not apply. On the other hand, a preorder can be used, in a straightforward fashion, to define a partial order and an equivalence relation. Doing so, however, is not always useful or worthwhile, depending on the problem domain being studied.

In words, when a b , {\displaystyle a\leq b,} one may say that b covers a or that a precedes b, or that b reduces to a. Occasionally, the notation ← or → or {\displaystyle \,\lesssim \,} is used instead of . {\displaystyle \,\leq .}

To every preorder, there corresponds a directed graph, with elements of the set corresponding to vertices, and the order relation between pairs of elements corresponding to the directed edges between vertices. The converse is not true: most directed graphs are neither reflexive nor transitive. In general, the corresponding graphs may contain cycles. A preorder that is antisymmetric no longer has cycles; it is a partial order, and corresponds to a directed acyclic graph. A preorder that is symmetric is an equivalence relation; it can be thought of as having lost the direction markers on the edges of the graph. In general, a preorder's corresponding directed graph may have many disconnected components.

Traduction de &#39quasi-ordering&#39 en Russe