quasi-polynomial - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

quasi-polynomial - traduction vers russe

Quasi polynomial; Quasipolynomial

quasi-polynomial         

общая лексика

квазиполиномиальный

ring of polynomials         
ALGEBRAIC STRUCTURE
Polynomial algebra; Integral polynomial; Ring of polynomials; Free commutative algebra; Free commutative ring; Integer Polynomial; Polynomial expression; Multivariate polynomial ring; Polynomial rings

математика

кольцо многочленов

polynomial expression         
ALGEBRAIC STRUCTURE
Polynomial algebra; Integral polynomial; Ring of polynomials; Free commutative algebra; Free commutative ring; Integer Polynomial; Polynomial expression; Multivariate polynomial ring; Polynomial rings

математика

многочленное выражение

Définition

Polynomial
·adj Containing many names or terms; multinominal; as, the polynomial theorem.
II. Polynomial ·noun An expression composed of two or more terms, connected by the signs plus or minus; as, a2 - 2ab + b2.
III. Polynomial ·adj Consisting of two or more words; having names consisting of two or more words; as, a polynomial name; polynomial nomenclature.

Wikipédia

Quasi-polynomial

In mathematics, a quasi-polynomial (pseudo-polynomial) is a generalization of polynomials. While the coefficients of a polynomial come from a ring, the coefficients of quasi-polynomials are instead periodic functions with integral period. Quasi-polynomials appear throughout much of combinatorics as the enumerators for various objects.

A quasi-polynomial can be written as q ( k ) = c d ( k ) k d + c d 1 ( k ) k d 1 + + c 0 ( k ) {\displaystyle q(k)=c_{d}(k)k^{d}+c_{d-1}(k)k^{d-1}+\cdots +c_{0}(k)} , where c i ( k ) {\displaystyle c_{i}(k)} is a periodic function with integral period. If c d ( k ) {\displaystyle c_{d}(k)} is not identically zero, then the degree of q {\displaystyle q} is d {\displaystyle d} . Equivalently, a function f : N N {\displaystyle f\colon \mathbb {N} \to \mathbb {N} } is a quasi-polynomial if there exist polynomials p 0 , , p s 1 {\displaystyle p_{0},\dots ,p_{s-1}} such that f ( n ) = p i ( n ) {\displaystyle f(n)=p_{i}(n)} when i n mod s {\displaystyle i\equiv n{\bmod {s}}} . The polynomials p i {\displaystyle p_{i}} are called the constituents of f {\displaystyle f} .

Traduction de &#39quasi-polynomial&#39 en Russe