quasi-uniformly - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

quasi-uniformly - traduction vers russe

SEQUENCE FUNCTION
Uniformly cauchy; Uniformly Cauchy

quasi-uniformly      

общая лексика

полуравномерно

uniformly convex         
REFLEXIVE BANACH SPACE SUCH THAT THE CENTER OF A LINE SEGMENT INSIDE THE UNIT BALL MUST LIE DEEP INSIDE THE UNIT BALL UNLESS THE SEGMENT IS SHORT
Uniformly convex Banach space; Uniformly convex banach space; Uniform Convexity; Uniform convexity; Uniformly convex

математика

равномерно выпуклый

uniform convexity         
REFLEXIVE BANACH SPACE SUCH THAT THE CENTER OF A LINE SEGMENT INSIDE THE UNIT BALL MUST LIE DEEP INSIDE THE UNIT BALL UNLESS THE SEGMENT IS SHORT
Uniformly convex Banach space; Uniformly convex banach space; Uniform Convexity; Uniform convexity; Uniformly convex

математика

равномерная выпуклость

Définition

Quasi
·- As if; as though; as it were; in a manner sense or degree; having some resemblance to; qualified;
- used as an adjective, or a prefix with a noun or an adjective; as, a quasi contract, an implied contract, an obligation which has arisen from some act, as if from a contract; a quasi corporation, a body that has some, but not all, of the peculiar attributes of a corporation; a quasi argument, that which resembles, or is used as, an argument; quasi historical, apparently historical, seeming to be historical.

Wikipédia

Uniformly Cauchy sequence

In mathematics, a sequence of functions { f n } {\displaystyle \{f_{n}\}} from a set S to a metric space M is said to be uniformly Cauchy if:

  • For all ε > 0 {\displaystyle \varepsilon >0} , there exists N > 0 {\displaystyle N>0} such that for all x S {\displaystyle x\in S} : d ( f n ( x ) , f m ( x ) ) < ε {\displaystyle d(f_{n}(x),f_{m}(x))<\varepsilon } whenever m , n > N {\displaystyle m,n>N} .

Another way of saying this is that d u ( f n , f m ) 0 {\displaystyle d_{u}(f_{n},f_{m})\to 0} as m , n {\displaystyle m,n\to \infty } , where the uniform distance d u {\displaystyle d_{u}} between two functions is defined by

d u ( f , g ) := sup x S d ( f ( x ) , g ( x ) ) . {\displaystyle d_{u}(f,g):=\sup _{x\in S}d(f(x),g(x)).}
Traduction de &#39quasi-uniformly&#39 en Russe