quasiregular prime - traduction vers russe
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

quasiregular prime - traduction vers russe

SEMIREGULAR POLYHEDRON THAT HAS EXACTLY TWO KINDS OF REGULAR FACES, WHICH ALTERNATE AROUND EACH VERTEX
Quasiregular polyhedra; Quasiregular tiling; Quasiregular polytope; Quasiregular honeycomb; Quasiregular polygon
  • 100px
  • 100px
  • 100px
  • 120px
  • 75px
  • 75px
  • 75px
  • 75px
  • 125px
  • 100px
  • 75px
  • 75px
  • 75px
  • 125px
  • 100px
  • 75px
  • 75px
  • 75px
  • 75px
  • 75px
  • 75px
  • 75px
  • 75px
  • 75px
  • 75px
  • 75px
  • 75px
  • 120px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 60px
  • 75px
  • 120px
  • 75px
  • 75px
  • 75px
  • 75px
  • 75px
  • 75px
  • 120px
  • 140px
  • 120px
  • 125px
  • 100px
  • 75px
  • 75px
  • 75px
  • 75px
  • 75px
  • 75px
  • 75px
  • 150px
  • 150px
  • 150px
  • 150px
  • 75px
  • 75px
  • 75px
  • 60px
  • 75px
  • 75px
  • 75px
  • 75px
  • 60px
  • 75px
  • nodes}}, same as regular [[octahedron]]
  • 75px
  • 75px
  • 60px
  • 75px
  • 75px
  • 75px
  • 60px
  • 75px
  • 75px
  • 60px
  • 60px
  • 100px
  • branch}}
  • 75px
  • 60px
  • 75px
  • 100px
  • 75px
  • 75px
  • 75px
  • 100px
  • 75px
  • Quasiregular polyhedra are generated from all 3 corners of the fundamental domain for [[Schwarz triangle]]s that have no right angles:<br>'''q &#124; 2 p''', '''p &#124; 2 q''', '''2 &#124; p q'''
  • 320px

quasiregular prime      

математика

квазирегулярное простое число

prime number         
  • The [[Gaussian prime]]s with norm less than 500
  • The small gear in this piece of farm equipment has 13 teeth, a prime number, and the middle gear has 21, relatively prime to 13
  • alt=Construction of a regular pentagon using straightedge and compass
  • relative error]] of <math>\tfrac{n}{\log n}</math> and the logarithmic integral <math>\operatorname{Li}(n)</math> as approximations to the [[prime-counting function]]. Both relative errors decrease to zero as <math>n</math> grows, but the convergence to zero is much more rapid for the logarithmic integral.
  • alt=Demonstration, with Cuisenaire rods, that 7 is prime, because none of 2, 3, 4, 5, or 6 divide it evenly
  • alt=The Rhind Mathematical Papyrus
  • alt=Plot of the absolute values of the zeta function
  • alt=Animation of the sieve of Eratosthenes
  • The connected sum of two prime knots
  • alt=The Ulam spiral
POSITIVE INTEGER WITH EXACTLY TWO DIVISORS, 1 AND ITSELF
Primes; Prime numbers; Prime factor; Primality; Prime Numbers; Prime factors; Odd prime; 1 no longer prime; Prime divisor; Prime numbers in nature; Even primes; Prime Number; Infinity of primes; Prime-Numbers; Euclidean prime number theorem; Table Of Primes List; Prime; Primalities; Prime-number; Uncompound number; Odd prime number; Ω(n); Primality of 1; A000040; 1 is not a prime number; Prime (number); Primenumber; Primality of one; Infinity of the primes; Draft:The first mathematical of the prime numbers; Draft:Integer X prime matrix; Prime (mathematics)

общая лексика

простое число

целое число, которое делится без остатка только на себя и на 1. Для поиска небольших простых чисел широко используется алгоритм "Решето Эратосфена"

Смотрите также

Sieve of Eratosthenes

odd prime         
  • The [[Gaussian prime]]s with norm less than 500
  • The small gear in this piece of farm equipment has 13 teeth, a prime number, and the middle gear has 21, relatively prime to 13
  • alt=Construction of a regular pentagon using straightedge and compass
  • relative error]] of <math>\tfrac{n}{\log n}</math> and the logarithmic integral <math>\operatorname{Li}(n)</math> as approximations to the [[prime-counting function]]. Both relative errors decrease to zero as <math>n</math> grows, but the convergence to zero is much more rapid for the logarithmic integral.
  • alt=Demonstration, with Cuisenaire rods, that 7 is prime, because none of 2, 3, 4, 5, or 6 divide it evenly
  • alt=The Rhind Mathematical Papyrus
  • alt=Plot of the absolute values of the zeta function
  • alt=Animation of the sieve of Eratosthenes
  • The connected sum of two prime knots
  • alt=The Ulam spiral
POSITIVE INTEGER WITH EXACTLY TWO DIVISORS, 1 AND ITSELF
Primes; Prime numbers; Prime factor; Primality; Prime Numbers; Prime factors; Odd prime; 1 no longer prime; Prime divisor; Prime numbers in nature; Even primes; Prime Number; Infinity of primes; Prime-Numbers; Euclidean prime number theorem; Table Of Primes List; Prime; Primalities; Prime-number; Uncompound number; Odd prime number; Ω(n); Primality of 1; A000040; 1 is not a prime number; Prime (number); Primenumber; Primality of one; Infinity of the primes; Draft:The first mathematical of the prime numbers; Draft:Integer X prime matrix; Prime (mathematics)

математика

нечетное простое число

Définition

Простое число

целое положительное число, большее, чем единица, не имеющее других делителей, кроме самого себя и единицы: 2, 3, 5, 7, 11, 13,... Понятие П. ч. является основным при изучении делимости натуральных (целых положительных) чисел; именно, основная теорема теории делимости устанавливает, что всякое целое положительное число, кроме 1, единственным образом разлагается в произведении П. ч. (порядок сомножителей при этом не принимается во внимание). П. ч. бесконечно много (это предложение было известно ещё древнегреческим математикам, его доказательство имеется в 9-й книге "Начал" Евклида). Вопросы делимости натуральных чисел, а следовательно, вопросы, связанные с П. ч., имеют важное значение при изучении групп (См. Группа); в частности, строение группы с конечным числом элементов тесно связано с тем, каким образом это число элементов (порядок группы) разлагается на простые множители. В теории алгебраических чисел (См. Алгебраическое число) рассматриваются вопросы делимости целых алгебраических чисел; понятия П. ч. оказалось недостаточным для построения теории делимости - это привело к созданию понятия Идеала. П. Г. Л. Дирихле в 1837 установил, что в арифметической прогрессии а + bx при х = 1, 2,... с целыми взаимно простыми а и b содержится бесконечно много П. ч.

Выяснение распределения П. ч. в натуральном ряде чисел является весьма трудной задачей чисел теории (См. Чисел теория). Она ставится как изучение асимптотического поведения функции π(х), обозначающей число П. ч., не превосходящих положительного числа х. Первые результаты в этом направлении принадлежат П. Л. Чебышеву, который в 1850 доказал, что имеются такие две такие постоянные а и А, что < π(x) < при любых x 2 [т. е., что π(х) растет, как функция ]. Хронологически следующим значительным результатом, уточняющим теорему Чебышева, является т. н. асимптотический закон распределения П. ч. (Ж. Адамар, 1896, Ш. Ла Валле Пуссен, 1896), заключающийся в том, что предел отношения π(х) к равен 1.

В дальнейшем значительные усилия математиков направлялись на уточнение асимптотического закона распределения П. ч. Вопросы распределения П. ч. изучаются и элементарными методами, и методами математического анализа. Особенно плодотворным является метод, основанный на использовании тождества

(произведение распространяется на все П. ч. р = 2, 3,...), впервые указанного Л. Эйлером; это тождество справедливо при всех комплексных s с вещественной частью, большей единицы. На основании этого тождества вопросы распределения П. ч. приводятся к изучению специальной функции - дзета-функции (См. Дзета-функция) ξ(s), определяемой при Res > 1 рядом

Эта функция использовалась в вопросах распределения П. ч. при вещественных s Чебышевым; Б. Риман указал на важность изучения ξ(s) при комплексных значениях s. Риман высказал гипотезу о том, что все корни уравнения ξ(s) = 0, лежащие в правой полуплоскости, имеют вещественную часть, равную 1/2. Эта гипотеза до настоящего времени (1975) не доказана; её доказательство дало бы весьма много в решении вопроса о распределении П. ч. Вопросы распределения П. ч. тесно связаны с Гольдбаха проблемой (См. Гольдбаха проблема), с не решенной ещё проблемой "близнецов" и другими проблемами аналитической теории чисел. Проблема "близнецов" состоит в том, чтобы узнать, конечно или бесконечно число П. ч., разнящихся на 2 (таких, например, как 11 и 13). Таблицы П. ч., лежащих в пределах первых 11 млн. натуральных чисел, показывают наличие весьма больших "близнецов" (например, 10006427 и 10006429), однако это не является доказательством бесконечности их числа. За пределами составленных таблиц известны отдельные П. ч., допускающие простое арифметическое выражение [например, установлено (1965), что 211213 -1 есть П. ч.; в нём 3376 цифр].

Лит.: Виноградов И. М., Основы теории чисел, 8 изд., М., 1972; Хассе Г., Лекции по теории чисел, пер. с нем., М., 1953; Ингам А. Е., Распределение простых чисел, пер. с англ., М. - Л., 1936; Прахар К., Распределение простых чисел, пер. с нем., М., 1967; Трост Э., Простые числа, пер, с нем., М., 1959.

Wikipédia

Quasiregular polyhedron

In geometry, a quasiregular polyhedron is a uniform polyhedron that has exactly two kinds of regular faces, which alternate around each vertex. They are vertex-transitive and edge-transitive, hence a step closer to regular polyhedra than the semiregular, which are merely vertex-transitive.

Their dual figures are face-transitive and edge-transitive; they have exactly two kinds of regular vertex figures, which alternate around each face. They are sometimes also considered quasiregular.

There are only two convex quasiregular polyhedra: the cuboctahedron and the icosidodecahedron. Their names, given by Kepler, come from recognizing that their faces are all the faces (turned differently) of the dual-pair cube and octahedron, in the first case, and of the dual-pair icosahedron and dodecahedron, in the second case.

These forms representing a pair of a regular figure and its dual can be given a vertical Schläfli symbol { p q } {\displaystyle {\begin{Bmatrix}p\\q\end{Bmatrix}}} or r{p,q}, to represent that their faces are all the faces (turned differently) of both the regular {p,q} and the dual regular {q,p}. A quasiregular polyhedron with this symbol will have a vertex configuration p.q.p.q (or (p.q)2).

More generally, a quasiregular figure can have a vertex configuration (p.q)r, representing r (2 or more) sequences of the faces around the vertex.

Tilings of the plane can also be quasiregular, specifically the trihexagonal tiling, with vertex configuration (3.6)2. Other quasiregular tilings exist on the hyperbolic plane, like the triheptagonal tiling, (3.7)2. Or more generally: (p.q)2, with 1/p + 1/q < 1/2.

Regular polyhedra and tilings with an even number of faces at each vertex can also be considered quasiregular by differentiating between faces of the same order, by representing them differently, like coloring them alternately (without defining any surface orientation). A regular figure with Schläfli symbol {p,q} can be considered quasiregular, with vertex configuration (p.p)q/2, if q is even.

Examples:

The regular octahedron, with Schläfli symbol {3,4} and 4 being even, can be considered quasiregular as a tetratetrahedron (2 sets of 4 triangles of the tetrahedron), with vertex configuration (3.3)4/2 = (3a.3b)2, alternating two colors of triangular faces.

The square tiling, with vertex configuration 44 and 4 being even, can be considered quasiregular, with vertex configuration (4.4)4/2 = (4a.4b)2, colored as a checkerboard.

The triangular tiling, with vertex configuration 36 and 6 being even, can be considered quasiregular, with vertex configuration (3.3)6/2 = (3a.3b)3, alternating two colors of triangular faces.

Traduction de &#39quasiregular prime&#39 en Russe