zero-point oscillations - traduction vers russe
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

zero-point oscillations - traduction vers russe

LOWEST POSSIBLE ENERGY OF A QUANTUM SYSTEM OR FIELD
Zero point energy; Zero Point Energy; Zero-point-energy; Zero-Point Energy; Null oscillations; 0-point energy; 0 point; Zeropoint energy; Nullpunktsenergie; Nullpunktenergie; Quantum vacuum zero point energy; Zero-point energies; Zero-point radiation; Zero-point motion; Lowest-energy state
  • [[Liquid helium]] retains [[kinetic energy]] and does not freeze regardless of temperature at standard atmospheric pressure due to zero-point energy. When cooled below its [[Lambda point]], it exhibits properties of [[superfluidity]].
  • Einstein's official 1921 portrait after receiving the Nobel Prize in Physics
  •  Timeline of the [[metric expansion of space]]. On the left, the dramatic expansion occurs in the [[inflationary epoch]].
  • Casimir forces on parallel plates
  • Light coming from the surface of a strongly magnetic [[neutron star]] (left) becomes linearly polarised as it travels through the vacuum.
  • Heisenberg, 1924
  • Hendrik Casimir (1958)
  • [[Fine structure]] of energy levels in hydrogen – relativistic corrections to the [[Bohr model]]
  • James Clerk Maxwell
  • quantum theory]]
  • ''ϕ''<sup>3</sup>}}. It has a ''Mexican-hat'' or ''champagne-bottle profile'' at the ground.
  • Paul Dirac, 1933
  • 2}}}} causes the ground-state of a harmonic oscillator to advance its phase (color). This has measurable effects when several eigenstates are superimposed.
  • Wide field view of the neutron star [[RX J1856.5-3754]]
  • Planck's constant]].
  • Kinetic energy vs temperature

zero-point oscillations      

общая лексика

нулевые колебания

zero point energy         

['zi(ə)rəupɔintenədʒi]

физика

энергия нулевых колебаний

нулевая энергия

zero point         
WIKIMEDIA DISAMBIGUATION PAGE
Zero-point; Zero Point; Zero point (disambiguation); Zero Point (geography)

общая лексика

нулевая точка (точка начала или прекращения жизнедеятельности организма)

Définition

Антагонистические игры
(матем.)

понятие теории игр (см. Игр теория). А. и. - игры, в которых участвуют два игрока (обычно обозначаемые I и II) с противоположными интересами. Для А. и. характерно, что выигрыш одного игрока равен проигрышу другого и наоборот, поэтому совместные действия игроков, их переговоры и соглашения лишены смысла. Большинство азартных и спортивных игр с двумя участниками (командами) можно рассматривать как А. и. Принятие решений в условиях неопределённости, в том числе принятие статистических решений, также можно интерпретировать как А. и. Определяются А. и. заданием множеств стратегий игроков и выигрышей игрока I в каждой ситуации, состоящей в выборе игроками своих стратегий. Таким образом, формально А. и. есть тройка ‹А, В, Н›, в которой А и В - множества стратегий игроков, а Н (а, b) - вещественная функция (функция выигрыша) от пар (а, b), где а A, b В. Игрок I, выбирая а, стремится максимизировать Н(а, b), а игрок II, выбирая b, - минимизировать Н (а, b). А. и. с конечными множествами стратегий игроков называются матричными играми (См. Матричные игры).

Основой целесообразного поведения игроков в А. и. считается принцип Минимакса. Следуя ему, I гарантирует себе выигрыш

точно так же II может не дать I больше, чем

Если эти "минимаксы" равны, то их общее значение называется значением игры, а стратегии, на которых достигаются внешние экстремумы, - оптимальными стратегиями игроков. Если "минимаксы" различны, то игрокам следует применять смешанные стратегии, т. е. выбирать свои первоначальные ("чистые") стратегии случайным образом с определёнными вероятностями. В этом случае значение функции выигрыша становится случайной величиной, а её Математическое ожидание принимается за выигрыш игрока I (соответственно, за проигрыш II). В играх против природы оптимальную смешанную стратегию природы можно принимать как наименее благоприятное априорное распределение вероятностей её состояний. В А. и. игроки, используя свои оптимальные стратегии, ожидают получения (например, в среднем, если игра повторяется многократно) вполне определённых выигрышей. На этом основан рекуррентный подход к динамическим играм в тех случаях, когда они сводятся к последовательностям А. и., решения которых можно найти непосредственно (например, если эти А. и. являются матричными). А. и. составляют класс игр, в которых принципиальные основы поведения игроков достаточно ясны. Поэтому всякий анализ более общих игр при помощи А. и. полезен для теории. Пример такого анализа даёт классическая Кооперативная теория игр, изучающая общие бескоалиционные игры через системы А. и. каждой из коалиций игроков против коалиции, состоящей из всех остальных игроков.

Лит.: Бесконечные антагонистические игры, под ред. Н. Н. Воробьева, М., 1963.

Н. Н. Воробьев.

Wikipédia

Zero-point energy

Zero-point energy (ZPE) is the lowest possible energy that a quantum mechanical system may have. Unlike in classical mechanics, quantum systems constantly fluctuate in their lowest energy state as described by the Heisenberg uncertainty principle. Therefore, even at absolute zero, atoms and molecules retain some vibrational motion. Apart from atoms and molecules, the empty space of the vacuum also has these properties. According to quantum field theory, the universe can be thought of not as isolated particles but continuous fluctuating fields: matter fields, whose quanta are fermions (i.e., leptons and quarks), and force fields, whose quanta are bosons (e.g., photons and gluons). All these fields have zero-point energy. These fluctuating zero-point fields lead to a kind of reintroduction of an aether in physics since some systems can detect the existence of this energy. However, this aether cannot be thought of as a physical medium if it is to be Lorentz invariant such that there is no contradiction with Einstein's theory of special relativity.

The notion of a zero-point energy is also important for cosmology, and physics currently lacks a full theoretical model for understanding zero-point energy in this context; in particular, the discrepancy between theorized and observed vacuum energy in the universe is a source of major contention. Physicists Richard Feynman and John Wheeler calculated the zero-point radiation of the vacuum to be an order of magnitude greater than nuclear energy, with a single light bulb containing enough energy to boil all the world's oceans. Yet according to Einstein's theory of general relativity, any such energy would gravitate, and the experimental evidence from the expansion of the universe, dark energy and the Casimir effect shows any such energy to be exceptionally weak. A popular proposal that attempts to address this issue is to say that the fermion field has a negative zero-point energy, while the boson field has positive zero-point energy and thus these energies somehow cancel each other out. This idea would be true if supersymmetry were an exact symmetry of nature; however, the LHC at CERN has so far found no evidence to support it. Moreover, it is known that if supersymmetry is valid at all, it is at most a broken symmetry, only true at very high energies, and no one has been able to show a theory where zero-point cancellations occur in the low-energy universe we observe today. This discrepancy is known as the cosmological constant problem and it is one of the greatest unsolved mysteries in physics. Many physicists believe that "the vacuum holds the key to a full understanding of nature".

Traduction de &#39zero-point oscillations&#39 en Russe