Banach algebra - définition. Qu'est-ce que Banach algebra
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Banach algebra - définition

PARTICULAR KIND OF ALGEBRAIC STRUCTURE
Banach algebras; Spectrum of a commutative Banach algebra; Commutative Banach algebra; B-algebra; Banach *-algebra; Banach ring; Structure space; Spectral mapping theorem; Character space; Unital Banach algebra; Algebra norm; Involutive Banach algebra; Spectrum of an abelian Banach algebra

Banach algebra         
<mathematics> An algebra in which the vector space is a Banach space. (1997-02-25)
Banach algebra         
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy
Amenable Banach algebra         
Amenable banach algebra; Amenable algebra
In mathematics, specifically in functional analysis, a Banach algebra, A, is amenable if all bounded derivations from A into dual Banach A-bimodules are inner (that is of the form a\mapsto a.x-x.

Wikipédia

Banach algebra

In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A {\displaystyle A} over the real or complex numbers (or over a non-Archimedean complete normed field) that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy

This ensures that the multiplication operation is continuous.

A Banach algebra is called unital if it has an identity element for the multiplication whose norm is 1 , {\displaystyle 1,} and commutative if its multiplication is commutative. Any Banach algebra A {\displaystyle A} (whether it has an identity element or not) can be embedded isometrically into a unital Banach algebra A e {\displaystyle A_{e}} so as to form a closed ideal of A e {\displaystyle A_{e}} . Often one assumes a priori that the algebra under consideration is unital: for one can develop much of the theory by considering A e {\displaystyle A_{e}} and then applying the outcome in the original algebra. However, this is not the case all the time. For example, one cannot define all the trigonometric functions in a Banach algebra without identity.

The theory of real Banach algebras can be very different from the theory of complex Banach algebras. For example, the spectrum of an element of a nontrivial complex Banach algebra can never be empty, whereas in a real Banach algebra it could be empty for some elements.

Banach algebras can also be defined over fields of p {\displaystyle p} -adic numbers. This is part of p {\displaystyle p} -adic analysis.