EMMA (accelerator) - définition. Qu'est-ce que EMMA (accelerator)
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est EMMA (accelerator) - définition

THE "ELECTRON MACHINE WITH MANY APPLICATIONS"
  • A series of quadrupole magnets that compose the EMMA particle accelerator at Daresbury Laboratory, UK

EMMA (accelerator)         
The electron machine with many applications or electron model for many applications (EMMA) is a linear non-scaling FFAG (fixed-field alternating-gradient) particle accelerator at Daresbury Laboratory in the UK that can accelerate electrons from 10 to 20 MeV. A FFAG is a type of accelerator in which the magnetic field in the bending magnets is constant during acceleration.
Startup accelerator         
PROGRAMS ASSISTING NEW COMPANIES WITH FUNDING, MENTORING, TRAINING AND EVENTS IN EXCHANGE FOR EQUITY
Business accelerator; Technology accelerator; Seed accelerator
Startup accelerators, also known as seed accelerators, are fixed-term, cohort-based programs, that include mentorship and educational components and culminate in a public pitch event or demo day. While traditional business incubators are often government-funded, generally take no equity, and rarely provide funding, accelerators can be either privately or publicly funded and cover a wide range of industries.
Web accelerator         
PROXY SERVER REDUCING WEBSITE ACCESS TIME
Web page accelerator; Web page acceleration; Internet accelerator; Web Acceleration; HTTP accelerator; Acceleration services; Web acceleration
A web accelerator is a proxy server that reduces website access time. They can be a self-contained hardware appliance or installable software.

Wikipédia

EMMA (accelerator)

The electron machine with many applications or electron model for many applications (EMMA) is a linear non-scaling FFAG (fixed-field alternating-gradient) particle accelerator at Daresbury Laboratory in the UK that can accelerate electrons from 10 to 20 MeV. A FFAG is a type of accelerator in which the magnetic field in the bending magnets is constant during acceleration. This means the particle beam will move radially outwards as its momentum increases. Acceleration was successfully demonstrated in EMMA, paving the way for future non-scaling FFAGs to meet important applications in energy, security and medicine.

A linear non-scaling FFAG is one in which a quantity known as the betatron tune is allowed to vary unchecked. In a conventional synchrotron such a variation would result in loss of the beam. However, in EMMA the beam will cross these resonances so rapidly that their effect should not be seen. EMMA will use the ALICE accelerator as a source of electrons and will be situated in the same laboratory at STFC's Daresbury site.

EMMA is a proof-of-principle machine; the experience gained in building this machine will be useful for future muon accelerators (which could be used in neutrino factories), and also for proton and carbon ion particle accelerators, which have applications for cancer therapy.

Non-scaling FFAGs are a good candidate for use in an accelerator-driven subcritical reactor system in which a non-critical fission core is driven to criticality by a small accelerator. Future electrical power generation could be influenced heavily by the use power stations consisting of a sub-critical core containing a material such as thorium, and a small accelerator capable of providing extra neutrons via a spallation target.

EMMA was funded by the BASROC consortium, under the CONFORM umbrella. Commissioning of EMMA began in June 2010 when the beam was injected and sent around part of the ring. Full ring commissioning commenced in August 2010. As of March 31 2011, full ring circumnavigation was completed to establish proof of principle.