K-vertex-connected graph - définition. Qu'est-ce que K-vertex-connected graph
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est K-vertex-connected graph - définition


K-vertex-connected graph         
  • A graph with connectivity 4.
GRAPH THAT CANNOT BE DISCONNECTED BY THE DELETION OF FEWER THAN K VERTICES
K-connected graph; Vertex connectivity
In graph theory, a connected graph is said to be -vertex-connected (or -connected) if it has more than vertices and remains connected whenever fewer than vertices are removed.
Biconnected graph         
  • A biconnected graph on four vertices and four edges
  • A graph that is not biconnected. The removal of vertex x would disconnect the graph.
  • A biconnected graph on five vertices and six edges
  • A graph that is not biconnected. The removal of vertex x would disconnect the graph.
TYPE OF GRAPH
Bi-connected graph
In graph theory, a biconnected graph is a connected and "nonseparable" graph, meaning that if any one vertex were to be removed, the graph will remain connected. Therefore a biconnected graph has no articulation vertices.
Universal vertex         
  • u}}
VERTEX OF AN UNDIRECTED GRAPH THAT IS ADJACENT TO ALL OTHER VERTICES OF THE GRAPH. IT MAY ALSO BE CALLED A DOMINATING VERTEX, AS IT FORMS A ONE-ELEMENT DOMINATING SET IN THE GRAPH
Dominating vertex; Cone (graph theory)
In graph theory, a universal vertex is a vertex of an undirected graph that is adjacent to all other vertices of the graph. It may also be called a dominating vertex, as it forms a one-element dominating set in the graph.