astroid - définition. Qu'est-ce que astroid
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est astroid - définition

PLANE CURVE, 4-CUSPED HYPOCYCLOID
Tetracuspid; Astroids
  • Astroid
  • 1= ''a'' + ''b'' = 1}}.
  • The hypocycloid construction of the astroid.
  • Astroid as an evolute of ellipse

astroid         
['astr??d]
¦ noun Mathematics a hypocycloid with four cusps (like a square with concave sides).
Great hexagonal hexecontahedron         
  • 3D model of a great hexagonal hexecontahedron
POLYHEDRON WITH 60 FACES
Great astroid ditriacontahedron
In geometry, the great hexagonal hexecontahedron (or great astroid ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great snub dodecicosidodecahedron.

Wikipédia

Astroid

In mathematics, an astroid is a particular type of roulette curve: a hypocycloid with four cusps. Specifically, it is the locus of a point on a circle as it rolls inside a fixed circle with four times the radius. By double generation, it is also the locus of a point on a circle as it rolls inside a fixed circle with 4/3 times the radius. It can also be defined as the envelope of a line segment of fixed length that moves while keeping an end point on each of the axes. It is therefore the envelope of the moving bar in the Trammel of Archimedes.

Its modern name comes from the Greek word for "star". It was proposed, originally in the form of "Astrois", by Joseph Johann von Littrow in 1838. The curve had a variety of names, including tetracuspid (still used), cubocycloid, and paracycle. It is nearly identical in form to the evolute of an ellipse.