fundamental polynomial - définition. Qu'est-ce que fundamental polynomial
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est fundamental polynomial - définition

ALGEBRAIC ENCODING OF GRAPH CONNECTIVITY
Dichromatic polynomial; Corank-nullity polynomial; Tutte–Whitney polynomial; Tutte-Whitney polynomial; Flow polynomial; Reliability polynomial

fundamental         
WIKIMEDIA DISAMBIGUATION PAGE
Fundamtenal; Fundamentals; Fundamental (album); Fundament; Fundamental (disambiguation)
I. a.
Essential, primary, indispensable, radical, constitutional, organic, most important, principal.
II. n.
Leading principle, essential part, essential principle.
fundamental         
WIKIMEDIA DISAMBIGUATION PAGE
Fundamtenal; Fundamentals; Fundamental (album); Fundament; Fundamental (disambiguation)
adj. fundamental to
Fundament         
WIKIMEDIA DISAMBIGUATION PAGE
Fundamtenal; Fundamentals; Fundamental (album); Fundament; Fundamental (disambiguation)
·noun Foundation.
II. Fundament ·noun The part of the body on which one sits; the buttocks; specifically (Anat.), the anus.

Wikipédia

Tutte polynomial

The Tutte polynomial, also called the dichromate or the Tutte–Whitney polynomial, is a graph polynomial. It is a polynomial in two variables which plays an important role in graph theory. It is defined for every undirected graph G {\displaystyle G} and contains information about how the graph is connected. It is denoted by T G {\displaystyle T_{G}} .

The importance of this polynomial stems from the information it contains about G {\displaystyle G} . Though originally studied in algebraic graph theory as a generalization of counting problems related to graph coloring and nowhere-zero flow, it contains several famous other specializations from other sciences such as the Jones polynomial from knot theory and the partition functions of the Potts model from statistical physics. It is also the source of several central computational problems in theoretical computer science.

The Tutte polynomial has several equivalent definitions. It is equivalent to Whitney’s rank polynomial, Tutte’s own dichromatic polynomial and Fortuin–Kasteleyn’s random cluster model under simple transformations. It is essentially a generating function for the number of edge sets of a given size and connected components, with immediate generalizations to matroids. It is also the most general graph invariant that can be defined by a deletion–contraction recurrence. Several textbooks about graph theory and matroid theory devote entire chapters to it.