fundamental subset - définition. Qu'est-ce que fundamental subset
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est fundamental subset - définition

DECISION PROBLEM IN COMPUTER SCIENCE
Subset sum; Subset-sum problem; Subset sums; Subset Sum; Sum of subsets; Subset-sum

fundamental         
WIKIMEDIA DISAMBIGUATION PAGE
Fundamtenal; Fundamentals; Fundamental (album); Fundament; Fundamental (disambiguation)
I. a.
Essential, primary, indispensable, radical, constitutional, organic, most important, principal.
II. n.
Leading principle, essential part, essential principle.
fundamental         
WIKIMEDIA DISAMBIGUATION PAGE
Fundamtenal; Fundamentals; Fundamental (album); Fundament; Fundamental (disambiguation)
adj. fundamental to
Fundament         
WIKIMEDIA DISAMBIGUATION PAGE
Fundamtenal; Fundamentals; Fundamental (album); Fundament; Fundamental (disambiguation)
·noun Foundation.
II. Fundament ·noun The part of the body on which one sits; the buttocks; specifically (Anat.), the anus.

Wikipédia

Subset sum problem

The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset S {\displaystyle S} of integers and a target-sum T {\displaystyle T} , and the question is to decide whether any subset of the integers sum to precisely T {\displaystyle T} . The problem is known to be NP-hard. Moreover, some restricted variants of it are NP-complete too, for example:

  • The variant in which all inputs are positive.
  • The variant in which inputs may be positive or negative, and T = 0 {\displaystyle T=0} . For example, given the set { 7 , 3 , 2 , 9000 , 5 , 8 } {\displaystyle \{-7,-3,-2,9000,5,8\}} , the answer is yes because the subset { 3 , 2 , 5 } {\displaystyle \{-3,-2,5\}} sums to zero.
  • The variant in which all inputs are positive, and the target sum is exactly half the sum of all inputs, i.e., T = 1 2 ( a 1 + + a n ) {\displaystyle T={\frac {1}{2}}(a_{1}+\dots +a_{n})} . This special case of SSP is known as the partition problem.

SSP can also be regarded as an optimization problem: find a subset whose sum is at most T, and subject to that, as close as possible to T. It is NP-hard, but there are several algorithms that can solve it reasonably quickly in practice.

SSP is a special case of the knapsack problem and of the multiple subset sum problem.