halting problem - définition. Qu'est-ce que halting problem
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est halting problem - définition


halting problem         
PROBLEM OF DETERMINING WHETHER A GIVEN PROGRAM WILL FINISH RUNNING OR CONTINUE FOREVER
The halting problem; Halt problem; Halting predicate; Turing's halting theorem; Halting Problem; Halting Theorem; Determining whether a program is going to run forever; Turing's halting problem; Lossy Turing machine
The problem of determining in advance whether a particular program or algorithm will terminate or run forever. The halting problem is the canonical example of a {provably unsolvable} problem. Obviously any attempt to answer the question by actually executing the algorithm or simulating each step of its execution will only give an answer if the algorithm under consideration does terminate, otherwise the algorithm attempting to answer the question will itself run forever. Some special cases of the halting problem are partially solvable given sufficient resources. For example, if it is possible to record the complete state of the execution of the algorithm at each step and the current state is ever identical to some previous state then the algorithm is in a loop. This might require an arbitrary amount of storage however. Alternatively, if there are at most N possible different states then the algorithm can run for at most N steps without looping. A program analysis called termination analysis attempts to answer this question for limited kinds of input algorithm. (1994-10-20)
Halting problem         
PROBLEM OF DETERMINING WHETHER A GIVEN PROGRAM WILL FINISH RUNNING OR CONTINUE FOREVER
The halting problem; Halt problem; Halting predicate; Turing's halting theorem; Halting Problem; Halting Theorem; Determining whether a program is going to run forever; Turing's halting problem; Lossy Turing machine
In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a general algorithm to solve the halting problem for all possible program-input pairs cannot exist.
Knapsack problem         
  • multiple constrained problem]] could consider both the weight and volume of the boxes. <br />(Solution: if any number of each box is available, then three yellow boxes and three grey boxes; if only the shown boxes are available, then all except for the green box.)
  • A demonstration of the dynamic programming approach.
PROBLEM IN COMBINATORIAL OPTIMIZATION
0/1 knapsack problem; 0-1 knapsack problem; Unbounded knapsack problem; Unbounded Knapsack Problem; Binary knapsack problem; Napsack problem; Backpack problem; 0-1 Knapsack problem; Integer knapsack problem; Knapsack Problem; Algorithms for solving knapsack problems; Methods for solving knapsack problems; Approximation algorithms for the knapsack problem; Bounded knapsack problem; Multiple knapsack problem; Rucksack problem; Computational complexity of the knapsack problem
The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.

Wikipédia

Halting problem
In computability theory, the halting problem is the problem of determining, from a description of an arbitrary computer program and an input, whether the program will finish running, or continue to run forever. Alan Turing proved in 1936 that a general algorithm to solve the halting problem for all possible program-input pairs cannot exist.