quaternion krakowian - définition. Qu'est-ce que quaternion krakowian
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est quaternion krakowian - définition

NUMBERS W + X I + Y J + Z K, WHERE W, X, Y, AND Z ARE COMPLEX NUMBERS, OR VARIANTS THEREOF, AND THE ELEMENTS OF {1, I, J, K} MULTIPLY AS IN THE QUATERNION GROUP
Complex quaternion; Complexified quaternion; Biquaternions

Quaternion algebra         
GENERALIZATION OF QUATERNIONS TO OTHER FIELDS
Quaternion (division algebra); Quaternion algebras; Split quaternion algebra
In mathematics, a quaternion algebra over a field F is a central simple algebra A over FSee Pierce. Associative algebras.
Versor         
QUATERNION OF NORM ONE (A UNIT QUATERNION), WHOSE MULTIPLICATION GROUP IS ISOMORPHIC TO SU(2)
Unit quaternion; Versors; Hyperbolic versor
·noun The turning factor of a quaternion.
Hurwitz quaternion         
  • order-3}}: (−1±''i''±''j''±''k'')/2}}
A QUATERNION WHOSE COMPONENTS ARE EITHER ALL INTEGERS OR ALL HALF-INTEGERS
Hurwitz integer; Hurwitz integral quaternion; Integral quaternion; Lipschitz quaternion; Lipschitz integer; Integer quaternion; Lipschitz unit; Hurwitz unit; Hurwitz quaternions
In mathematics, a Hurwitz quaternion (or Hurwitz integer) is a quaternion whose components are either all integers or all half-integers (halves of odd integers; a mixture of integers and half-integers is excluded). The set of all Hurwitz quaternions is

Wikipédia

Biquaternion

In abstract algebra, the biquaternions are the numbers w + x i + y j + z k, where w, x, y, and z are complex numbers, or variants thereof, and the elements of {1, i, j, k} multiply as in the quaternion group and commute with their coefficients. There are three types of biquaternions corresponding to complex numbers and the variations thereof:

  • Biquaternions when the coefficients are complex numbers.
  • Split-biquaternions when the coefficients are split-complex numbers.
  • Dual quaternions when the coefficients are dual numbers.

This article is about the ordinary biquaternions named by William Rowan Hamilton in 1844 (see Proceedings of the Royal Irish Academy 1844 & 1850 page 388). Some of the more prominent proponents of these biquaternions include Alexander Macfarlane, Arthur W. Conway, Ludwik Silberstein, and Cornelius Lanczos. As developed below, the unit quasi-sphere of the biquaternions provides a representation of the Lorentz group, which is the foundation of special relativity.

The algebra of biquaternions can be considered as a tensor product C H {\displaystyle \mathbb {C} \otimes \mathbb {H} } (taken over the reals) where C or C {\displaystyle \mathbb {C} } is the field of complex numbers and H or H {\displaystyle \mathbb {H} } is the division algebra of (real) quaternions. In other words, the biquaternions are just the complexification of the quaternions. Viewed as a complex algebra, the biquaternions are isomorphic to the algebra of 2 × 2 complex matrices M2(C). They are also isomorphic to several Clifford algebras including H(C) = Cℓ03(C) = Cℓ2(C) = Cℓ1,2(R),: 112, 113  the Pauli algebra Cℓ3,0(R),: 112 : 404  and the even part Cℓ01,3(R) = Cℓ03,1(R) of the spacetime algebra.: 386