transitive closure - définition. Qu'est-ce que transitive closure
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est transitive closure - définition


transitive closure         
The transitive closure R* of a relation R is defined by x R y => x R* y x R y and y R* z => x R* z I.e. elements are related by R* if they are related by R directly or through some sequence of intermediate related elements. E.g. in graph theory, if R is the relation on nodes "has an edge leading to" then the transitive closure of R is the relation "has a path of zero or more edges to". See also Reflexive transitive closure.
Transitive closure         
In mathematics, the transitive closure of a binary relation on a set is the smallest relation on that contains and is transitive. For finite sets, "smallest" can be taken in its usual sense, of having the fewest related pairs; for infinite sets it is the unique minimal transitive superset of .
Reflexive transitive closure         
MATHEMATICAL PROPERTY OF AN OPERATION
Closure (binary operation); Closed under; Set closure (mathematics); Abstract closure; Axiom of closure; Abstract closure operator; Additively closed; Closure property of multiplication; Reflexive transitive closure; Reflexive transitive symmetric closure; P closure (binary relation); P closure; Reflexive symmetric transitive closure; Equivalence closure; Closure property; Congruence closure; Closure of a relation
Two elements, x and y, are related by the reflexive transitive closure, R+, of a relation, R, if they are related by the transitive closure, R*, or they are the same element.

Wikipédia

Transitive closure
In mathematics, the transitive closure of a binary relation on a set is the smallest relation on that contains and is transitive. For finite sets, "smallest" can be taken in its usual sense, of having the fewest related pairs; for infinite sets it is the unique minimal transitive superset of .