Возрастание и убывание функции - définition. Qu'est-ce que Возрастание и убывание функции
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Возрастание и убывание функции - définition

Сужение; Расширение функции; Продолжение функции; Сужение и продолжение функции

ВОЗРАСТАНИЕ И УБЫВАНИЕ ФУНКЦИИ      
понятия математического анализа. Функция f(x) называется возрастающей на отрезке [a, b], если для любой пары точек x1 и x2, a? x1 < x2 ?b, выполняется неравенство f(x1) < f(x2), и неубывающей, если f(x1) ? f(x2). Аналогично определяются убывание и невозрастание функции.
Возрастание и убывание функции      

функция y = f (x) называется возрастающей на отрезке [a, b], если для любой пары точек х и х', а ≤ х < х' ≤ b выполняется неравенство f (x) f (x'), и строго возрастающей - если выполняется неравенство f (x) < f (x'). Аналогично определяется убывание и строгое убывание функции. Например, функция у = х2 (рис., а) строго возрастает на отрезке [0,1], а

(рис., б) строго убывает на этом отрезке. Возрастающие функции обозначаются f (x)↑, а убывающие f (x)↓. Для того чтобы дифференцируемая функция f (x) была возрастающей на отрезке [а, b], необходимо и достаточно, чтобы её производная f'(x) была неотрицательной на [а, b].

Наряду с возрастанием и убыванием функции на отрезке рассматривают возрастание и убывание функции в точке. Функция у = f (x) называется возрастающей в точке x0, если найдётся такой интервал (α, β), содержащий точку x0, что для любой точки х из (α, β), х> x0, выполняется неравенство f (x0) f (x), и для любой точки х из (α, β), х< x0, выполняется неравенство f (x) ≤ f (x0). Аналогично определяется строгое возрастание функции в точке x0. Если f'(x0) > 0, то функция f (x) строго возрастает в точке x0. Если f (x) возрастает в каждой точке интервала (a, b), то она возрастает на этом интервале.

Лит.: Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 6 изд., т. 1, М., 1966.

С. Б. Стечкин.

График к ст. Возрастание и убывание функции.

сужение         
СУЖ'ЕНИЕ, сужения, мн. нет, ср. Действие и состояние по гл. сузить
-суживать
2 и сузиться
-суживаться
2. Сужение пищевода.

Wikipédia

Сужение функции

Сужение функции на подмножество X {\displaystyle X} её области определения D X {\displaystyle D\supset X}  — функция с областью определения X {\displaystyle X} , совпадающая с исходной функцией на всём X {\displaystyle X} .

Сужение функции f {\displaystyle f} на X {\displaystyle X} обычно обозначается f | X {\displaystyle f|_{X}} или f | X {\displaystyle f|X} . Так, для f : A B {\displaystyle f:A\to B} , и X A {\displaystyle X\subset A} , g = f | X {\displaystyle g=f|_{X}} означает, что g : X B {\displaystyle g:X\to B} и g ( x ) = f ( x ) {\displaystyle g(x)=f(x)} для любого x X {\displaystyle x\in X} .

Qu'est-ce que ВОЗРАСТАНИЕ И УБЫВАНИЕ ФУНКЦИИ - définition