Гиббса распределение - définition. Qu'est-ce que Гиббса распределение
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Гиббса распределение - définition

Гиббса распределения; Каноническое распределение; Распределения Гиббса

ГИББСА РАСПРЕДЕЛЕНИЕ      
каноническое , распределение вероятностей различных состояний макроскопической системы с постоянным объемом и постоянным числом частиц, находящейся в равновесии с окружающей средой заданной температуры; если система может обмениваться частицами со средой, то распределение Гиббса называется большим каноническим. Для изолированной системы справедливо Гиббса распределение микроканоническое, согласно которому все микросостояния системы с данной энергией равновероятны. Названо по имени открывшего это распределение Дж. У. Гиббса.
Гиббса распределение      

фундаментальный закон статистической физики (См. Статистическая физика), определяющий вероятность данного микроскопического состояния системы, т. е. вероятность того, что координаты и импульсы частиц системы имеют определённые значения.

Для систем, находящихся в тепловом равновесии с окружающей средой, в которой поддерживается постоянная температура (с термостатом), справедливо каноническое Г. р., установленное Дж. У. Гиббсом в 1901 для классической статистики. Согласно этому распределению, вероятность определённого микроскопического состояния пропорциональна функции распределения f (qi, pi), зависящей от координат qi и импульсов pi частиц системы:

где H (qi, pi) - функция Гамильтона системы, т. е. её полная энергия, выраженная через координаты и импульсы частиц, k - Больцмана постоянная, Т - абсолютная температура; постоянная А не зависит от qi и pi и определяется из условия нормировки (сумма вероятностей пребывания системы во всех возможных состояниях должна равняться единице). Т. о., вероятность микросостояния определяется отношением энергии системы к величине kT (которая является мерой интенсивности теплового движения молекул) и не зависит от конкретных значений координат и импульсов частиц, реализующих данное значение энергии.

В квантовой статистике вероятность wn данного микроскопического состояния определяется значением энергетического уровня системы Εп.

Для идеального газа, т. е. газа. в котором энергией взаимодействия частиц можно пренебречь, каноническое Г. р. переходит в Больцмана распределение, определяющее вероятность того, что координата и импульс (энергия) отдельной частицы имеют данные значения (см. Больцмана статистика).

Если система изолирована, то её энергия постоянна; в этом случае справедливо микроканоническое Г. р., согласно которому все микроскопические состояния изолированной системы равновероятны. Микроканоническое Г. р. лежит в основе Г. р. канонического.

Лит. см. при статье Статистическая физика.

Г. Я. Мякишев.

Распределение Гиббса         
Распределение (каноническое) Гиббса — распределение состояний макроскопической термодинамической системы частиц, находящейся в тепловом равновесии с термостатом (окружающей средой). В классическом случае плотность распределения равна

Wikipédia

Распределение Гиббса

Распределение (каноническое) Гиббса — распределение состояний макроскопической термодинамической системы частиц, находящейся в тепловом равновесии с термостатом (окружающей средой). В классическом случае плотность распределения равна

w ( X , a ) = 1 Z e β H ( X , a ) , {\displaystyle w(X,a)={\frac {1}{Z}}e^{-\beta H(X,a)},}

где X {\displaystyle X}  — совокупность 6 N {\displaystyle 6N} канонических переменных N {\displaystyle N} частиц ( 3 N {\displaystyle 3N} координат и 3 N {\displaystyle 3N} импульсов), a {\displaystyle a}  — совокупность внешних параметров, H ( X , a ) {\displaystyle H(X,a)}  — гамильтониан системы, β {\displaystyle \beta }  — параметр распределения. Величину Θ = 1 β {\displaystyle \Theta ={\frac {1}{\beta }}} называют модулем распределения. Можно показать, что модуль распределения Θ = k T {\displaystyle \Theta =kT} , где T {\displaystyle T}  — абсолютная температура, k {\displaystyle k}  — постоянная Больцмана. Z {\displaystyle Z}  — параметр, определяемый исходя из условия нормировки ( X ) w ( X , a ) d X = 1 {\displaystyle \int _{(X)}w(X,a)dX=1} , откуда следует, что

Z = ( X ) e β H ( X , a ) d X . {\displaystyle Z=\int _{(X)}e^{-\beta H(X,a)}dX.}

Z {\displaystyle Z} называют интегралом состояний.

Часто используют следующую параметризацию распределения Гиббса:

w ( X , a ) = e Ψ ( Θ , a ) H ( X , a ) Θ , {\displaystyle w(X,a)=e^{\frac {\Psi (\Theta ,a)-H(X,a)}{\Theta }},}

где Ψ ( Θ , a ) = Θ ln Z ( Θ , a ) {\displaystyle \Psi (\Theta ,a)=-\Theta \ln Z(\Theta ,a)}  — так называемая свободная энергия системы.

В квантовом случае предполагается счётное множество энергетических уровней, и вместо плотности распределения рассматривается вероятность нахождения системы в том или ином состоянии:

W i = e Ψ E i Θ . {\displaystyle W_{i}=e^{\frac {\Psi -E_{i}}{\Theta }}.}

Условие нормировки имеет вид i = 0 W i = 1 {\displaystyle \sum _{i=0}^{\infty }W_{i}=1} , следовательно

Z = i = 0 e E i Θ , {\displaystyle Z=\sum _{i=0}^{\infty }e^{-{\frac {E_{i}}{\Theta }}},}

что является аналогом интеграла состояний и называется суммой состояний или статистической суммой.

Распределение Гиббса представляет наиболее общую и удобную основу для построения равновесной статистической механики. Знание распределения частиц системы позволяет найти средние значения различных характеристик термодинамической системы по формуле математического ожидания. С учётом большого количества частиц в макроскопических системах, эти математические ожидания в силу закона больших чисел совпадают с реально наблюдаемыми значениями термодинамических параметров.

Qu'est-ce que ГИББСА РАСПРЕДЕЛЕНИЕ - définition