совокупность основанных на математической теории корреляции (См.
Корреляция) методов обнаружения корреляционной зависимости между двумя случайными признаками или факторами. К. а. экспериментальных данных заключает в себе следующие основные практические приёмы: 1) построение корреляционного поля и составление корреляционной таблицы; 2) вычисление выборочных коэффициентов корреляции или корреляционного отношения; 3) проверка статистической гипотезы значимости связи. Дальнейшее исследование заключается в установлении конкретного вида зависимости между величинами (см.
Регрессионный анализ)
. Зависимость между тремя и большим числом случайных признаков или факторов изучается методами многомерного К. а. (вычисление частных и множественных коэффициентов корреляции и корреляционных отношений).
Корреляционное поле и корреляционная таблица являются вспомогательными средствами при анализе выборочных данных. При нанесении на координатную плоскость выборочных точек получают корреляционное поле. По характеру расположения точек поля можно составить предварительное мнение о форме зависимости случайных величин (например, о том, что одна величина в среднем возрастает или убывает при возрастании другой). Для численной обработки результаты обычно группируют и представляют в форме корреляционной таблицы. В каждой клетке корреляционной таблицы (см. в ст.
Корреляция в математической статистике) приводятся численности
гц; тех пар
(х, у), компоненты которых попадают в соответствующие интервалы группировки по каждой переменной.
Предполагая длины интервалов группировки (по каждому из переменных) равными между собой, выбирают центры xi (соответственно yj) этих интервалов и числа nij в качестве основы для расчётов.
Коэффициент корреляции и корреляционное отношение дают более точную информацию о характере и силе связи, чем картина корреляционного поля. Выборочный коэффициента корреляции определяют по формуле:
,
где
, ,
, .
При большом числе независимых наблюдений, подчиняющихся одному и тому же распределению, и при надлежащем выборе интервалов группировки коэффициент ρ̂ близок к истинному коэффициенту корреляции ρ. Поэтому использование ρ̂ как меры связи имеет четко определённый смысл для тех распределений, для которых естественной мерой зависимости служит ρ (т. е. для нормальных или близких к ним распределений). Во всех др. случаях в качестве характеристики силы связи рекомендуется использовать корреляционное отношение η, интерпретация которого не зависит от вида исследуемой зависимости.
Выборочное значение η̂y|x вычисляется по данным корреляционной таблицы:
η̂2y|
x =
где числитель характеризует рассеяние условных средних значений
около безусловного среднего
y̅(аналогично определяется выборочное значение
η̂x|
y). Величина
y|
x используется в качестве меры отклонения зависимости от линейной, т. к. обычно
η̂2y|
x>ρ
2,
x|
y>ρ
2 и лишь в случае линейной зависимости ρ
2=
η̂2y|
x=
x|
y. Так, при анализе корреляции между высотой и диаметром северной сосны было обнаружено, что условные средние значения высоты сосны для заданного диаметра связаны нелинейной зависимостью. Корреляционное отношение (высоты к диаметру) в этом случае равно 0,813, а коэффициент корреляции равен 0,762.
Проверка гипотезы значимости связи основывается на знании законов распределения выборочных корреляционных характеристик. В случае нормального распределения величина выборочного коэффициента корреляции ρ̂ считается значимо отличной от нуля, если выполняется неравенство
,
где
tα есть критическое значение t-распределения Стьюдента с
(n-2
) степенями свободы, соответствующее выбранному уровню значимости
α (см.
Стьюдента распределение)
. Если же известно, что
ρ ≠ 0, то необходимо воспользоваться
z-преобразованием Фишера (не зависящим от
ρ и
n):
.
Исходя из приближённой нормальности z, можно определить доверительные интервалы для истинного коэффициента корреляции ρ.
В случае когда изучаются не количественные признаки, а качественные, обычные меры зависимости не годятся. Однако, если удаётся каким-либо образом упорядочить изучаемые объекты в отношении некоторого признака, т. е. прописать им порядковые номера - ранги (по два номера в соответствии с двумя признаками), то в качестве выборочной характеристики связи можно воспользоваться, например, т. н. коэффициентом ранговой корреляции:
,
где di - разность рангов по обоим признакам для каждого объекта. По степени уклонения R от нуля можно сделать некоторое заключение о степени зависимости качественных признаков. Проверка гипотезы независимости признаков при небольшом объёме выборки производится с помощью специальных таблиц, а при n > 10 для вычисления критических значений выборочных коэффициентов пользуются тем, что эти величины распределены приближённо нормально.
А. В. Прохоров.