Коши теорема - définition. Qu'est-ce que Коши теорема
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Коши теорема - définition

СТРАНИЦА ЗНАЧЕНИЙ
Коши теорема

Коши теорема         

о разложении аналитической функции (См. Аналитические функции) в степенной ряд. Пусть f (z) - функция, однозначная и аналитическая в области G; z0 - произвольная (конечная) точка области G и ρ - расстояние от z0 до границы этой области. Тогда существует степенной ряд, расположенный по степеням z - z0, сходящийся в круге |z-z0| < ρ и представляющий в этом круге функцию f (z):

.

Граница области G может сводиться к бесконечно удалённой точке; в этом случае ρ следует считать равным бесконечности. Эта теорема была установлена О. Коши (1831), исходившим из представления аналитической функции в виде Коши интеграла.

Коши задача         
Коши задача; Теорема о непрерывной зависимости от параметра задачи Коши

одна из основных задач теории дифференциальных уравнений (См. Дифференциальные уравнения), впервые систематически изучавшаяся О. Коши. Заключается в нахождении решения u (x, t); х = (x1,..., xn) дифференциального уравнения вида:

, (1)

m0 < m, m > 0,

удовлетворяющего т. н. начальным условиям.

, t = t0, x ∈ G0, k = 0, ..., m-1, (2)

где G0 - носитель начальных данных - область гиперплоскости t = to пространства переменных x1,..., xn. Когда F и fk, k = 0,..., m - 1, являются аналитическими функциями своих аргументов, задача Коши (1), (2) в некоторой области G пространства переменных t, х, содержащей G0, всегда имеет и притом единственное решение. Однако это решение может оказаться неустойчивым (т. е. малое изменение начальных данных может вызвать сильное изменение решения), например в том случае, когда уравнение (1) принадлежит эллиптическому типу. При неаналитических данных задача Коши (1), (2) может потерять смысл, если не ограничиться рассмотрением того случая, когда уравнение (1) является гиперболическим.

Лит.: Курант Р., Гильберт Д., Методы математической физики, пер. с нем., т. 2, М.- Л., 1951; Тихонов А. Н., Самарский А. А., Уравнения математической физики, 3 изд., М., 1966.

А. В. Бицадзе.

Задача Коши         
Коши задача; Теорема о непрерывной зависимости от параметра задачи Коши
Зада́ча Коши́ — одна из основных задач теории дифференциальных уравнений (обыкновенных и с частными производными); состоит в нахождении решения (интеграла) дифференциального уравнения, удовлетворяющего так называемым начальным условиям (начальным данным).

Wikipédia

Теорема Коши

Теоремой Коши называются следующие утверждения:

  • Интегральная теорема Коши
  • Теорема Коши о многогранниках
  • Теорема Коши о среднем значении
  • Теорема Коши (теория групп)