собственные волны, гармонические волны той или иной физической природы (электромагнитные, упругие и др.), сохраняющие при своём прямолинейном распространении поперечную структуру поля и (или) поляризацию. Этим Н. в. отличаются от всех других волн, способных распространяться в данной системе. Например, при распространении между параллельными металлическими плоскостями (рис. 1) электромагнитных Н. в. поперечная (по отношению к направлению распространения) структура электрического поля Н. в. одинакова во всех сечениях. Поперечная же структура любых других волн, отличных от Н. в., при распространении не сохраняется. Так, форма волны, полученной в результате наложения двух Н. в., изображенных на рис. 1, а и б, меняется от сечения к сечению (рис. 1, в).
Наибольший практический интерес представляют электромагнитные Н. в. в волноводных системах, используемых для передачи сообщений или электромагнитной энергии. К ним относятся радиоволноводы СВЧ, коаксиальные кабели, плазменные волноводы, ионосферные и тропосферные каналы дальней радиосвязи, световоды, выполненные в виде стеклянных волокон, т. н. квазиоптические линии передачи волн миллиметрового и субмиллиметрового диапазонов и т.д.
Важные применения находят Н. в. в акустических волноводных системах (акустические трубы, звуковые каналы в океане и тропосфере), упругие Н. в. - в пластинах (волны Лэмба, т. н. поперечные Н. в.) и стержнях (продольные, изгибные и крутильные Н. в.). Упругие Н. в. применяются, в частности, для создания ультразвуковых линий задержки и для определения упругих и др. параметров твёрдых тел.
Число Н. в. N, способных распространяться в перечисленных выше системах, зависит от соотношения между длиной волны λ и поперечными размерами системы d. Для волн с фиксированной частотой это число всегда конечно, при этом чем больше отношение d/λ, тем больше N. На очень низких частотах (т. е. при d/λ << 1/2) может распространяться только одна Н. в. определённого типа, а в некоторых системах, например в полых радиоволноводах, распространение низкочастотных Н. в. вообще невозможно. Фазовые и групповые скорости Н. в. разных типов отличаются друг от друга (этим, в частности, объясняется искажение поперечной структуры поля при наложении нескольких Н. в., рис. 1). Поэтому для передачи информации желательно использовать только один тип Н. в.
Физическое значение Н. в. определяется тем, что в области, свободной от источников, любое возмущение может быть представлено в виде суперпозиции Н. в., причём результирующий поток энергии (упругой или электромагнитной) равен сумме потоков во всех Н. в. В этом отношении понятие Н. в. в волновой теории играет роль, аналогичную понятию нормальных колебаний (См.
Нормальные колебания) в теории колебательных систем.
Вдоль границы раздела двух сред могут распространяться поверхностные Н. в., например рэлеевские волны на границе упругого тела (рис. 2), т. н. медленные электромагнитные волны в замедляющих структурах и др. В случае Н. в. в многопроводных связанных линиях передачи, используемых в технике связи, в направлении распространения сохраняется не поперечное распределение поля, а отношение амплитуд колебаний на отдельных проводах.
Наконец, Н. в. в безграничных и однородных сплошных средах - это плоские
волны (См.
Плоская волна), сохраняющие при распространении свою поляризацию. Н. в. являются, например, обыкновенная и необыкновенная
волны в одноосных кристаллах. Эти
волны линейно поляризованы во взаимно перпендикулярных направлениях, причём поляризация этих
волн сохраняется в направлении распространения (
рис. 3), в то время как поляризация произвольно поляризованной
волны меняется от точки к точке. Др. примерами Н. в. в сплошных средах являются плоские упругие
волны, эллиптически поляризованные электромагнитные
волны в магнитоактивной плазме, циркулярно поляризованные
волны в оптически активных средах.
Лит.: Горелик Г. С., Колебания и волны, 2 изд., М., 1959; Бриллюэн Л. и Пароди М., Распространение волн в периодических структурах, пер. с франц., М., 1959; Бреховских Л. М., Волны в слоистых средах, М., 1973; Вайнштейн Л. А., Электромагнитные волны, М., 1957; Бергман Л., Ультразвук и его применение в науке и технике, пер. с нем., М., 1956; Викторов И. А., Физические основы применения ультразвуковых волн Рэлея и Лэмба в технике, М., 1966.
Ю. А. Кравцов.
Рис. 1. Схема распространения двух нормальных волн а и б и волны в, полученной в результате их наложения. В сечениях 1 и 3 разность фаз нормальных волн φ = 0 и они складываются, а в сечении 2 φ = -π и волна вычитается.
Рис. 2. Схема распространения рэлеевской волны на границе упругого тела.
Рис. 3. Схема распространения обыкновенной и необыкновенной волн в одноосных кристаллах.