Риманово пространство - définition. Qu'est-ce que Риманово пространство
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Риманово пространство - définition

ГЛАДКОЕ МНОГООБРАЗИЕ
Риманово пространство

Риманово пространство         

пространство, в малых областях которого имеет место приближённо (с точностью до малых высшего порядка сравнительно с размерами областей) евклидова геометрия, хотя точно такое пространство может не быть евклидовым. Р. п. названы по имени Б. Римана, наметившего в 1854 основы теории таких пространств (см. Риманова геометрия). Простейшими Р. п. являются евклидово пространство и примыкающие к нему два других пространства постоянной кривизны, в которых имеет место Лобачевского геометрия и Римана геометрия (не смешивать последнюю с общей римановой геометрией, которая изучает Р. п. вообще).

Риманово многообразие         
Риманово многообразие, или риманово пространство (M, g), — это (вещественное) гладкое многообразие M, в котором каждое касательное пространство снабжено скалярным произведением g — метрическим тензором, меняющимся от точки к точке гладким образом. Другими словами, риманово многообразие — это дифференцируемое многообразие, в котором касательное пространство в каждой точке является конечномерным евклидовым пространством.
Риманова геометрия         
РАЗДЕЛ ДИФФЕРЕНЦИАЛЬНОЙ ГЕОМЕТРИИ
Геометрия в целом
Ри́манова геоме́трия — это раздел дифференциальной геометрии, главным объектом изучения которого являются римановы многообразия, то есть гладкие многообразия с дополнительной структурой, римановой метрикой, иначе говоря — с выбором евклидовой метрики на каждом касательном пространстве, причём эта метрика гладко меняется от точки к точке. Иногда, особенно часто в математической физике, под римановой геометрией подразумевают также и псевдориманову геометрию многообразий с псевдоримановой метрикой, например, геометрию пространства-времени специ�

Wikipédia

Риманово многообразие

Риманово многообразие, или риманово пространство (M, g), — это (вещественное) гладкое многообразие M, в котором каждое касательное пространство снабжено скалярным произведением g — метрическим тензором, меняющимся от точки к точке гладким образом. Другими словами, риманово многообразие — это дифференцируемое многообразие, в котором касательное пространство в каждой точке является конечномерным евклидовым пространством.

Это позволяет определить различные геометрические понятия на римановых многообразиях, такие как углы, длины кривых, площади (или объёмы), кривизну, градиент функции и дивергенции векторных полей.

Риманова метрика g — это положительно определённый симметрический тензор — метрический тензор; точнее — это гладкое ковариантное симметричное положительно определенное тензорное поле валентности (0,2).

Не стоит путать римановы многообразия с римановыми поверхностями — многообразиями, которые локально выглядят как склейки комплексных плоскостей.

Термин назван в честь немецкого математика Бернхарда Римана.

Qu'est-ce que Р<font color="red">и</font>маново простр<font color="red">а</font>нство - définition