свойство многих проводников, состоящее в том, что их электрическое сопротивление скачком падает до нуля при охлаждении ниже определённой критической температуры Тк, характерной для данного материала. С. обнаружена у более чем 25 металлических элементов, у большого числа сплавов и интерметаллических соединений, а также у некоторых полупроводников. Рекордно высоким значением Тк (около 23 К) обладает соединение Nb3Ge.
Основные явления. Скачкообразное исчезновение сопротивления при понижении температуры впервые наблюдал X.
Камерлинг-Оннес (1911) на ртути (
рис. 1). Он пришёл к выводу, что ртуть при
Т = 4,15 К переходит в новое состояние, которое вследствие его необычных электрических свойств может быть названо сверхпроводящим. Несколько позднее Камерлинг-Оннес обнаружил, что электрическое сопротивление ртути восстанавливается при включении достаточно сильного магнитного поля (его называют критическим магнитным полем (См.
Критическое магнитное поле)
Нк)
. Измерения показали, что падение сопротивления до нуля происходит на протяжении очень узкого, но конечного интервала температур.
Ширина этого интервала для чистых образцов составляет 10-3 - 10-4 К и возрастает при наличии примесей и других дефектов структуры.
Отсутствие сопротивления в сверхпроводящем состоянии с наибольшей убедительностью демонстрируется опытами, в которых в сверхпроводящем кольце возбуждается ток, практически не затухающий с течением времени. В одном из вариантов опыта используются два кольца из сверхпроводящего металла. Большее из колец неподвижно закрепляется, а меньшее концентрически подвешивается на упругой нити таким образом, что когда нить не закручена, плоскости колец образуют между собой некоторый угол. Кольца охлаждаются в присутствии магнитного поля ниже температуры Тк, после чего поле выключается. При этом в кольцах возбуждаются токи, взаимодействие между которыми стремится уменьшить первоначальный угол между плоскостями колец. Нить закручивается, а наблюдаемое постоянство угла закручивания показывает, что токи в кольцах являются незатухающими. Опыты такого рода позволили установить, что сопротивление металла в сверхпроводящем состоянии меньше чем 10-20 ом․см (сопротивление чистых образцов меди или серебра составляет около 10-9 ом․см при температуре жидкого гелия). Однако сверхпроводник не является просто идеальным проводником, как это считалось ещё в течение более чем 20 лет после открытия С. Существование значительно более глубокого различия между нормальным и сверхпроводящим состояниями металла стало очевидным, после того как нем. физики В. Мейснер и Р. Оксенфельд (1933) установили, что слабое магнитное поле не проникает в глубь сверхпроводника. Особенно важно, что это имеет место независимо от того, было ли поле включено до или после перехода металла в сверхпроводящее состояние. В отличие от этого, идеальный проводник (т. е. проводник с исчезающе малым сопротивлением) должен захватывать пронизывающий его магнитный поток. Это различие иллюстрирует рис. 2 (а, б, в), на котором схематически изображено распределение поля вблизи односвязного металлического образца на трёх последовательных этапах опыта: а) образец находится в нормальном состоянии, внешнее поле свободно проникает в глубь металла; б) образец охлаждается ниже Тк, магнитное поле выталкивается из сверхпроводника (верхний рисунок), тогда как в случае идеального проводника распределение поля оставалось бы неизменным (нижний рисунок); в) внешнее поле выключается, при этом исчезает и намагниченность сверхпроводника. В случае идеального проводника поток магнитной индукции через образец сохранил бы свою величину, и картина поля была бы такой же, как у постоянного магнита.
Выталкивание магнитного поля из сверхпроводящего образца (это явление обычно называют эффектом Мейснера) означает, что в присутствии внешнего магнитного поля такой образец ведёт себя как идеальный
Диамагнетик той же формы с магнитной восприимчивостью (См.
Магнитная восприимчивость) χ
= -1/4π
. В частности, если образец имеет форму длинного сплошного цилиндра, а внешнее поле
Н однородно и параллельно оси цилиндра, то магнитный момент, отнесённый к единице объёма, будет равен
М = -Н/4π
. Это примерно в 10
5 раз больше по абсолютной величине, чем удельная намагниченность диамагнитного металла в нормальном состоянии. Эффект Мейснера связан с тем, что при
Н <
Нк в поверхностном слое сверхпроводящего цилиндра появляется круговой незатухающий ток, сила которого как раз такова, что магнитное поле этого тока компенсирует внешнее поле в толще сверхпроводника. Опыт показывает, что в случае больших образцов слабое магнитное поле в условиях эффекта Мейснера проникает в металл на глубину δ Сверхпровод
имость 10
-5-10
-6 см, именно в этом слое течёт поверхностный токоло
По своему поведению в достаточно сильных полях сверхпроводники подразделяются на две большие группы, т. н. сверхпроводники 1-го и 2-го рода. На рис. 3 и 4 в несколько идеализированной форме изображены кривые намагничивания М (Н), типичные для каждой из этих групп. Кривые относятся к случаю длинных цилиндрических образцов, помещенных в поле, параллельное оси цилиндра. При такой геометрии опыта отсутствуют эффекты размагничивания, и картина поэтому является наиболее простой. Начальный прямолинейный участок на этих кривых, где М =-Н/4π, соответствует интервалу значений Н, на котором имеет место эффект Мейснера. Как видно из рисунка, дальнейший ход кривых М (Н) для сверхпроводников 1-го и 2-го рода существенно различается.
Сверхпроводники 1-го рода, которыми являются все достаточно чистые сверх-проводящие металлические элементы (за исключением V и Nb), теряют С. при поле
Н = Нк, когда поле скачком проникает в металл и он во всём объёме переходит в нормальное состояние. При этом удельный магнитный момент также скачком уменьшается примерно в 10
5 раз. Критическому полю
Нк можно дать простое термодинамическое истолкование. При температуре
Т <
Тк и в отсутствии магнитного поля
Свободная энергия в сверхпроводящем состоянии
Fc ниже, чем в нормальном F
н. При включении поля свободная энергия сверхпроводника возрастает на величину
H 2/8π
, равную работе намагничивания, и при
Н =
Нк сравнивается с
Fн (в силу малости магнитного момента в нормальном состоянии
Fн практически не изменяется при включении поля). Т. о., поле
Нк определяется из условия равновесия в точке перехода:
Fc + Н 2к/8π = Fн. (1)
Критическое поле
Нк зависит от температуры: оно максимально при
Т = 0 и монотонно убывает до нуля по мере приближения к
Тк. (Значения
Нк для некоторых сверхпроводников приведены в ст.
Сверхпроводники.) На
рис. 5 изображена фазовая диаграмма на плоскости (
Н, Т)
. Заштрихованная область, ограниченная кривой
Нк (
Т)
, соответствует сверхпроводящему состоянию. По измеренной зависимости
Нк (
Т) могут быть рассчитаны все термодинамические характеристики сверхпроводника 1-го рода. В частности, из формулы (1) непосредственно получается (при дифференцировании по температуре) выражение для теплоты фазового перехода (См.
Теплота фазового перехода) в сверхпроводящее состояние:
, (2)
где S -
Энтропия единицы объёма. Знак Q таков, что теплота поглощается сверхпроводником при переходе в нормальное состояние. Поэтому если разрушение С. магнитным полем производится при адиабатической изоляции образца, то последний будет охлаждаться.
Скачкообразный характер фазового перехода в магнитном поле (
рис. 3) наблюдается только в случае весьма специальной геометрии опыта: длинный цилиндр в продольном поле. При произвольной форме образца и др. ориентациях поля переход оказывается растянутым по более или менее широкому интервалу значений
Н: он начинается при
Н < Нк и заканчивается, когда поле во всех точках образца превысит
Нк. В этом интервале значений
Н сверхпроводник 1-го рода находится в т. н. промежуточном состоянии (См.
Промежуточное состояние)
. Он расслаивается на чередующиеся области нормальной и сверхпроводящей фаз, причём так, что поле в нормальной фазе вблизи границы раздела параллельно этой границе и равно
Нк. По мере увеличения поля возрастает доля нормальной фазы и происходит уменьшение магнитного момента образца. Структура расслоения и характер кривой намагничивания существенно зависят от геометрических факторов. В частности, для пластинки, ориентированной перпендикулярно магнитному полю, расслоение начинается уже в слабом поле, гораздо меньшем, чем
Нк.
С магнитными свойствами сверхпроводников тесно связаны и особенности протекания в них тока. В силу эффекта Мейснера ток является поверхностным, он сосредоточен в тонком слое, определяемом глубиной проникновения магнитного поля. Когда ток достигает некоторой критической величины, достаточной для создания критического магнитного поля, сверхпроводник 1-го рода переходит в промежуточное состояние и приобретает электрическое сопротивление.
К сверхпроводникам 2-го рода относится большинство сверхпроводящих сплавов. Кроме того, сверхпроводниками 2-го рода становятся и сверхпроводящие металлические элементы (сверхпроводники 1-го рода) при введении в них достаточно большого количества примесей. Картина разрушения сверхпроводимости магнитным полем является у этих сверхпроводников более сложной. Как видно из
рис. 4, даже в случае цилиндрического образца в продольном поле происходит постепенное уменьшение магнитного момента на протяжении значительного интервала полей от
Нк, когда поле начинает проникать в толщу образца, и до поля
Нк, при котором происходит полное разрушение сверхпроводящего состояния. В большинстве случаев кривая намагничивания такого типа является необратимой (наблюдается магнитный
Гистерезис)
. Величина гистерезиса очень чувствительна к технологии приготовления образцов, и в некоторых случаях путём специальной обработки удаётся получить образцы с почти обратимой кривой намагничивания. Поле
Нк часто оказывается весьма большим, достигая сотен тысяч
Эрстед (см. статьи Магниты сверхпроводящие (См.
Магнит сверхпроводящий) и
Сверхпроводники)
. Что же касается термодинамического критического поля
Нк, определяемого соотношением (1), то оно для сверхпроводников 2-го рода не является непосредственно наблюдаемой характеристикой. Однако его можно рассчитать, исходя из найденных опытным путём значений свободной энергии в нормальном и сверхпроводящем состояниях в отсутствии магнитного поля. Оказывается, что вычисленное таким способом значение Н
к попадает в интервал между
и
Т. о., проникновение магнитного поля в сверхпроводник 2-го рода начинается уже в поле, меньшем, чем Н
к, когда условие равновесия (1) ещё нарушено в пользу сверхпроводящего состояния. Понять это парадоксальное на первый взгляд явление можно, если принять во внимание поверхностную энергию границы раздела нормальной и сверхпроводящей фаз (См.
Фаза)
. В случае сверхпроводников 1-го рода эта энергия положительна, так что появление границы раздела приводит к проигрышу в энергии. Это существенно ограничивает степень расслоения в промежуточном состоянии. Аномальные магнитные свойства сверхпроводников 2-го рода можно качественно объяснить, если принять, что в этом случае поверхностная энергия отрицательна. Именно к такому выводу приводит современная теория сверхпроводимости. При отрицательной поверхностной энергии уже при
Н < Нк энергетически выгодным является образование тонких областей нормальной фазы, ориентированных вдоль магнитного поля. Возможность реализации такого состояния сверхпроводника 2-го рода была предсказана А. А.
Абрикосовым
(1952) на основе теории сверхпроводимости В. Л.
Гинзбурга и Л. Д.
Ландау. Позднее им же был произведён детальный расчёт структуры этого состояния. Оказалось, что нормальные области зарождаются в форме нитей, пронизывающих образец и имеющих толщину, грубо говоря, сравнимую с глубиной проникновения магнитного поля. При увеличении внешнего поля концентрация нитей возрастает, что и приводит к постепенному уменьшению магнитного момента. Т. о., в интервале значений поля от
до
, сверхпроводник находится в состоянии, которое принято называть смешанным.
Фазовый переход в сверхпроводящее состояние в отсутствии магнитного поля. Прямые измерения теплоёмкости (См.
Теплоёмкость) сверхпроводников при
Н = 0 показывают, что при понижении температуры теплоёмкость в точке перехода
Тк испытывает скачок до величины, которая примерно в 2,5 раза превышает её значение в нормальном состоянии в окрестности
Тк (
рис. 6). При этом теплота перехода
Q = 0, что следует, в частности, из формулы (2) (
Нк = 0 при
Т = Тк)
. Т. о., переход из нормального в сверхпроводящее состояние в отсутствии магнитного поля является фазовым переходом 2-го рода. Из формулы (2) можно получить важное соотношение между скачком теплоёмкости и углом наклона кривой
Нк (
Т)
(
рис. 5) в точке
Т = Тк:
,
где Сс и Сн- значения теплоёмкости в сверхпроводящем и нормальном состояниях. Это соотношение с хорошей точностью подтверждается экспериментом.
Природа сверхпроводимости. Совокупность экспериментальных фактов о С. убедительно показывает, что при охлаждении ниже Т
к проводник переходит в новое состояние, качественно отличающееся от нормального. Исследуя различные возможности объяснения свойств сверхпроводника, особенно эффекта Мейснера, немецкие учёные, работавшие в Англии, Г. и Ф. Лондоны (1934) пришли к заключению, что сверхпроводящее состояние является макроскопическим квантовым состоянием металла. На основе этого представления они создали феноменологическую теорию, объясняющую поведение сверхпроводников в слабом магнитном поле - эффект Мейснера и отсутствие сопротивления. Обобщение теории Лондонов, сделанное Гинзбургом и Ландау (1950), позволило рассмотреть вопросы, относящиеся к поведению сверхпроводников в сильных магнитных полях. При этом было объяснено огромное количество экспериментальных данных и предсказаны новые важные явления. Убедительным подтверждением правильности исходных предпосылок упомянутых теорий явилось открытие эффекта квантования магнитного потока (См.
Квантование магнитного потока)
, заключённого внутри сверхпроводящего кольца. Из уравнений Лондонов следует, что магнитный поток в этом случае может принимать лишь значения, кратные кванту потока Ф
о =
hc/e*, где
е* - заряд носителей сверхпроводящего тока,
h - Планка постоянная, с - Скорость света. В 1961 Р. Долл и М. Небауэр и, независимо, Б. Дивер и У. Фейроенк (США) обнаружили этот эффект. Оказалось, что
е* = 2
e, где
е - заряд электрона. Явление квантования магнитного потока имеет место и в случае упомянутого выше состояния сверхпроводника 2-го рода в магнитном поле, большем, чем
Нк1. Образующиеся здесь нити нормальной фазы несут квант потока Ф
о. Найденная в опытах величина заряда частиц, создающих своим движением сверхпроводящий ток (
е* = 2
e), подтверждает
Купера эффект, на основе которого в 1957 Дж.
Бардин, Л.
Купер и Дж.
Шриффер (США) и Н. Н.
Боголюбов (СССР) построили последовательную микроскопическую теорию С. Согласно Куперу, два электрона с противоположными
Спинами при определённых условиях могут образовывать связанное состояние (куперовскую пару). Заряд такой пары равен 2e. Пары обладают нулевым значением спина и подчиняются Бозе - Эйнштейна статистике (См.
Бозе - Эйнштейна статистика)
. Образуясь при переходе металла в сверхпроводящее состояние, пары испытывают т. н. бозе-конденсацию (см.
Квантовая жидкость)
, и поэтому система куперовских пар обладает свойством сверхтекучести (См.
Сверхтекучесть)
. Т. о., С. представляет собой сверхтекучесть электронной жидкости. При
Т = 0 связаны в пары все электроны проводимости. Энергия связи электронов в паре весьма мала: она равна примерно 3,5 k
Tk, где
k - Больцмана постоянная. При разрыве пары, происходящем, например, при поглощении кванта электромагнитного поля или кванта звука (
Фонона)
, в системе возникают возбуждения. При отличной от нуля температуре имеется определённая равновесная концентрация возбуждений, она возрастает с температурой, а концентрация пар соответственно уменьшается. Энергия связи пары определяет т. н. щель в энергетическом спектре возбуждений, т. е. минимальную энергию, необходимую для создания отдельного возбуждения. Природа сил притяжения между электронами, приводящих к образованию пар, вообще говоря, может быть различной, хотя у всех известных сверхпроводников эти силы определяются взаимодействием электронов с фононами. Тем не менее развитие теории С. стимулировало интенсивные теоретические поиски других механизмов С. В этом плане особое внимание уделяется т. н. нитевидным (одномерным) и слоистым (двумерным) структурам, обладающим достаточно большой проводимостью, в которых имеются основания ожидать более интенсивного притяжения между электронами, чем в обычных сверхпроводниках, а следовательно, - и более высокой температуры перехода в сверхпроводящее состояние. Явления, родственные С., по-видимому, могут иметь место и в некоторых космических объектах, например в нейтронных звёздах (См.
Нейтронные звёзды)
.
Практическое применение сверхпроводимости интенсивно расширяется. Наряду с
магнитами сверхпроводящими (См.
Магнит сверхпроводящий)
, сверхпроводящими магнитометрами (См.
Сверхпроводящие магнитометры) существует ряд других технических устройств и измерительных приборов, основанных на использовании различных свойств сверхпроводников (см.
Криоэлектроника)
. Построены сверхпроводящие резонаторы, обладающие рекордно высокой (до 10
10) добротностью, сверхпроводящие элементы для ЭВМ, перспективно применение сверхпроводников в крупных электрических машинах и т. д.
Лит.: Де Жен П., Сверхпроводимость металлов и сплавов, пер. с англ., М., 1968; Линтон Э., Сверхпроводимость, пер. с англ., 2 изд., М., 1971; Сверхпроводимость. Сб. ст., М., 1967; Мендельсон К., На пути к абсолютному нулю, пер. с англ., М., 1971; физический энциклопедический словарь, т. 4, М., 1965, с. 475-82.
Г. М. Элиашберг.
Рис. 1. Зависимость сопротивления R от температуры Т для ртути (Hg) и для платины (Pt). Ртуть при Т = 4,12К переходит в сверхпроводящее состояние. R0°с - значение R при 0 °С.
Рис. 2. Распределение магнитного поля около сверхпроводящего шара и около шара с исчезающим сопротивлением (идеальный проводник): а) Т > Тк; б) Т < Тк, внешнее поле Нвн ≠ 0; в) Т < Тк, Нвн = 0.
Рис. 3. Кривая намагничивания сверхпроводников 1-го рода.
Рис. 4. Кривая намагничивания сверхпроводников 2-го рода.
Рис. 5. Фазовая диаграмма для сверхпроводников 1-го и 2-го рода.
Рис. 6. Скачок теплоёмкости сверхпроводника в точке перехода (Тк) в отсутствии внешнего магнитного поля (Сс и Сн - теплоёмкость в сверхпроводящем и нормальном состояниях).