раздел спектроскопии (См.
Спектроскопия)
, посвященный изучению квантовых переходов в системе уровней энергии кристаллических тел и сопутствующих им физических явлений. С. к. - важный источник информации о свойствах и строения
кристаллов (См.
Кристаллы)
. Её теоретической основой является квантовая теория твёрдого тела (См.
Твёрдое тело)
. В С. к. широко используется теория групп, которая позволяет учесть свойства симметрии
кристаллов (См.
Симметрия кристаллов)
, т. е. установить симметрию волновых функций для энергетических уровней и найти
Отбора правила для разрешенных переходов между ними. Для С. к. характерно разнообразие экспериментальных методов, включающих использование низких температур,
Лазеров (как источников возбуждения), фотоэлектрического счёта фотонов, модуляционных методов регистрации спектров (см.
Спектральные приборы)
, синхротронного излучения (См.
Синхротронное излучение) и т. д.
Многообразие в кристалле частиц и квазичастиц (См.
Квазичастицы) с сильно различающимися характерными энергиями обусловливает поглощение и испускание квантов электромагнитной энергии в широком диапазоне частот от радиоволн (См.
Радиоволны) до γ-излучения. Малые кванты энергии связаны в основном с магнитными взаимодействиями частиц и изучаются радиоспектроскопическими методами (см.
Радиоспектроскопия)
. Рентгеновская спектроскопия изучает переходы электронов на внутр. оболочки атомов и ионов, образующих
кристалл. Гамма-излучение связано с переходами между ядерными уровнями. Однако обычно под С. к. понимают оптическую спектроскопию, охватывающую диапазон электромагнитных волн от далёкой инфракрасной до дальней ультрафиолетовой областей.
В С. к. исследуются спектры поглощения, отражения, люминесценции и рассеяния (см.
Спектры кристаллов)
, а также влияние на них различных внешних воздействий: электрического поля (
Штарка эффект)
, магнитного поля (
Зеемана эффект)
, всестороннего сжатия кристалла и направленных деформаций (пьезоспектроскопический эффект). Исследуется также зависимость спектра кристалла от температуры (изменение структуры, сдвиги и уширения полос, изменения интенсивности) и поляризации света (См.
Поляризация света)
. После поглощения света в кристалле развиваются процессы релаксации (См.
Релаксация) и передачи энергии возбуждения. Для их исследования важны временные измерения спектральных характеристик, позволяющие найти времена жизни определённых состояний, времена релаксации и т. д. Если во взаимодействии с излучением принимает участие несколько частиц, взаимодействующих также между собой, то возникают кооперативные явления.
С. к. изучает влияние дефектов в кристаллах (См.
Дефекты в кристаллах) (как существующих в реальном кристалле, так и намеренно создаваемых для придания кристаллу определённых свойств, например введением примесей) на их спектры. Спектры тонких кристаллических плёнок и
кристаллов малых размеров могут обладать особенностями (влияние поверхности). Наряду с однофотонными процессами при возбуждении кристалла лазерным излучением можно наблюдать также
Многофотонные процессы, при которых в одном акте рождается или исчезает несколько фотонов. Изучаются также различные нелинейные эффекты в кристаллах.
С. к. позволяет получить информацию о системе энергетических уровней кристалла, о механизмах взаимодействия света с веществом, о переносе и преобразовании энергии, поглощённой в кристалле, и её изменениях (фазовые переходы (См.
Фазовый переход))
, о фотохимических реакциях и фотопроводимости (См.
Фотопроводимость)
. С. к. позволяет также получить данные о структуре кристаллической решётки, о строении и ориентации различных дефектов и примесных центров в кристаллах и т. д. На данных С. к. основаны применения
кристаллов в квантовой электронике (См.
Квантовая электроника)
, в качестве люминофоров, сцинтилляторов, преобразователей световой энергии, оптических материалов, ячеек для записи информации. Методы С. к. используются в спектральном анализе (См.
Спектральный анализ)
.
Лит.: Феофилов П. П., Поляризованная люминесценция атомов, молекул и кристаллов, М., 1959; Филипс Дж., Оптические спектры твёрдых тел в области собственного поглощения, пер. с англ., [М.], 1968; Ребане К. К., Элементарная теория колебательной структуры спектров примесных центров кристалла, М., 1968; Каплянский А. А., Броуде В. Л., Спектроскопия кристаллов, в кн.: Физический энциклопедический словарь, т. 5, М., 1966; Кардона М., Модуляционная спектроскопия, пер. с англ., М., 1972; Бальхаузен К., Введение в теорию поля лигандов, пер. с англ., М., 1964; Пуле А., Матье Ж. - П., Колебательные спектры и симметрия кристаллов, пер. с франц., М., 1973.
Н. Н. Кристофель.