способность полимерных тел сохранять эксплуатационные свойства при повышенных температурах.
Теплостойкость характеризует верхнюю границу области температур, в которой полимерный материал может нести механические нагрузки без изменения формы. Потеря теплостойкости обусловлена физическими процессами (переход стеклообразных
полимеров в
Высокоэластическое состояние или плавление кристаллических
полимеров).
Термостойкость характеризует верхний предел рабочих температур в тех случаях, когда работоспособность полимера определяется устойчивостью к химическим превращениям (обычно к деструкции
полимеров (См.
Деструкция полимеров) в инертных или окислительных средах). Для каучуков
и резин, а также для ряда твёрдых
полимеров с высокими значениями температур стеклования
и плавления эксплуатационные характеристики зависят от термостойкости; она особенно важна в процессах переработки при формовании изделий из полимерных материалов.
В зависимости от вида изделий (покрытия, волокна, конструкционные материалы) и их назначения используют различные методы определения теплостойкости. Для конструкционных твёрдых материалов теплостойкость оценивают по изменению жёсткости; показателем служит так называемая деформационная теплостойкость - температура, при которой начинает развиваться недопустимо большая деформация образца, находящегося под определённой нагрузкой и нагреваемого с определённой скоростью. Стандартизованные в СССР методы оценки деформационной теплостойкости различаются способом измерения деформации, допустимым уровнем её развития, величиной нагрузки, скоростью нагрева. Термостойкость определяют по изменению веса образца полимера при его нагреве с заданной скоростью. Теплостойкость и термостойкость позволяют судить о верхних предельных температурах использования полимеров при кратковременном тепловом воздействии; при длительных воздействиях эти температуры обычно на несколько десятков градусов ниже.