Трансцендентные функции - définition. Qu'est-ce que Трансцендентные функции
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Трансцендентные функции - définition

Трансцендентные функции

Трансцендентная функция         
Трансцендентная функция — аналитическая функция, не являющаяся алгебраической. Простейшими примерами трансцендентных функций служат показательная функция, тригонометрические функции, обратные тригонометрические функции, логарифмическая функция.
ТРАНСЦЕНДЕНТНАЯ ФУНКЦИЯ         
аналитическая функция, не являющаяся алгебраической функцией. Напр., показательная функция, тригонометрические функции.
Трансцендентные функции         

аналитические функции, не являющиеся алгебраическими (см. Алгебраические функции (См. Алгебраическая функция)). Простейшими примерами Т. ф. служат Показательная функция, Тригонометрические функции, Логарифмическая функция. Если Т. ф. рассматривать как функции комплексного переменного, то характерным признаком их является наличие хотя бы одной особенности, отличной от полюсов и точек ветвления конечного порядка (см. Особая точка). Так, например, e z; cosz и sinz имеют существенно особую точку z = ∞, lnz - точки ветвления бесконечного порядка при z = 0 и z = ∞. Основания общей теории Т. ф. даёт теория аналитических функций (См. Аналитические функции). Специальные Т. ф. изучаются в соответствующих дисциплинах (теория гипергеометрических, эллиптических, бесселевых функций и т.д.).

Лит.: Уиттекер Э.-Т., Ватсон Дж. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 1-2, М., 1969.

Wikipédia

Трансцендентная функция

Трансцендентная функция — аналитическая функция, не являющаяся алгебраической. Простейшими примерами трансцендентных функций служат показательная функция, тригонометрические функции, обратные тригонометрические функции, логарифмическая функция.

Если трансцендентные функции рассматривать как функции комплексного переменного, то характерным их признаком является наличие хотя бы одной особенности, отличной от полюсов и точек ветвления конечного порядка.

Так, например, e z {\displaystyle e^{z}} ; cos z {\displaystyle \cos z} и sin z {\displaystyle \sin z} имеют существенно особую точку z = {\displaystyle z=\infty } (где {\displaystyle \infty } обозначает вершину сферы Римана — бесконечно удалённую точку комплексной плоскости), ln z {\displaystyle \ln z}  — точки ветвления бесконечного порядка при z = 0 {\displaystyle z=0} и z = {\displaystyle z=\infty } .

Основания общей теории трансцендентных функций даёт теория аналитических функций. Специальные трансцендентные функции изучаются в соответствующих дисциплинах (теория гипергеометрических, эллиптических, бесселевых функций и т. д.).

Qu'est-ce que Трансцендентная функция - définition