туннелирование, преодоление микрочастицей потенциального барьера (См.
Потенциальный барьер) в случае, когда её полная энергия (остающаяся при Т. э. неизменной) меньше высоты барьера. Т. э. - явление существенно квантовой природы, невозможное в классической механике; аналогом Т. э. в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки зрения геометрической оптики, происходит
Полное внутреннее отражение. Явление Т. э. лежит в основе многих важных процессов в атомной и молекулярной физике, в физике атомного ядра, твёрдого тела и т.д.
Т. э. объясняется в конечном счёте
Неопределённостей соотношением (см. также
Квантовая механика, Корпускулярно-волновой дуализм)
. Классическая частица не может находиться внутри потенциального барьера высоты
V, если её энергия
Е < V, так как кинетическая энергия частицы
р2/2m = Е -
V становится при этом отрицательной, а её импульс
р - мнимой величиной (
m - масса частицы). Однако для микрочастицы этот вывод несправедлив: вследствие соотношения неопределённостей фиксация частицы в пространственной области внутри барьера делает неопределённым её импульс. Поэтому имеется отличная от нуля вероятность обнаружить микрочастицу внутри запрещенной, с точки зрения классической механики, области. Соответственно появляется определённая вероятность прохождения частицы сквозь потенциальный барьер, что и отвечает Т. э. Эта вероятность тем больше, чем меньше масса частицы, чем уже потенциальный барьер и чем меньше энергии недостаёт частице, чтобы достичь высоты барьера (то есть чем меньше разность
V - E)
. Вероятность прохождения сквозь барьер представляет собой главный фактор, определяющий физические характеристики Т. э. В случае одномерного потенциального барьера такой характеристикой служит коэффициент прозрачности барьера, равный отношению потока прошедших сквозь него частиц к падающему на барьер потоку. В случае трёхмерного потенциального барьера, ограничивающего замкнутую область пространства с пониженной потенциальной энергией (потенциальную яму (См.
Потенциальная яма))
, Т. э. характеризуется вероятностью
w выхода частицы из этой области в единицу времени; величина
w равна произведению частоты колебаний частицы внутри потенциальной ямы на вероятность прохождения сквозь барьер. Возможность "просачивания" наружу частицы, первоначально находившейся в потенциальной яме, приводит к тому, что соответствующие уровни энергии частиц приобретают конечную ширину порядка
hw (
h - постоянная Планка), а сами эти состояния становятся квазистационарными.
Примером проявления Т. э. в атомной физике могут служить процессы автоионизации атома в сильном электрическом поле. В последнее время особенно большое внимание привлекает процесс ионизации атома в поле сильной электромагнитной волны. В ядерной физике Т. э. лежит в основе понимания закономерностей
Альфа-распада радиоактивных ядер: в результате совместного действия короткодействующих ядерных сил притяжения и электростатических (кулоновских) сил отталкивания, α-частице при её выходе из ядра приходится преодолевать трёхмерный потенциальный барьер описанного выше типа. Без Т. э. было бы невозможно протекание термоядерных реакций (См.
Термоядерные реакции)
: кулоновский потенциальный барьер, препятствующий необходимому для синтеза сближению ядер-реагентов, преодолевается частично благодаря высокой скорости (высокой температуре) таких ядер, а частично - благодаря Т. э. Особенно многочисленны примеры проявления Т. э. в физике твёрдого тела: автоэлектронная эмиссия электронов из металлов и полупроводников (см.
Туннельная эмиссия)
; явления
в полупроводниках, помещенных в сильное электрическое поле (см.
Туннельный диод)
; миграция валентных электронов в кристаллической решётке (см.
Твёрдое тело)
; эффекты, возникающие на контакте между двумя сверхпроводниками, разделёнными тонкой плёнкой нормального металла или диэлектрика (см.
Джозефсона эффект) и т.д.
Лит.: Блохинцев Д. И., Основы квантовой механики, 4 изд., М., 1963; Ландау Л. Д., Лифшиц Е. М., Квантовая механика. Нерелятивистская теория, 3 изд., М., 1974 (Теоретическая физика, т. 3).
Д. А. Киржниц.