Le terme "globally finite cochain" est un composé de plusieurs mots, mais dans l'ensemble, il est utilisé comme un nom dans le contexte des mathématiques, plus particulièrement en topologie algébrique et en théorie des cochaînes.
La transcription phonétique en alphabet phonétique international est : /ˈɡloʊbəli ˈfaɪnɪt koʊʃeɪn/
Signification : Dans les mathématiques pures, une cochaîne est souvent utilisée dans la théorie de la cohomologie pour analyser des espaces topologiques. Une cochaîne est dite "globalement finie" quand elle a un support compact et finit par une somme d'éléments non nuls.
Utilisation : Ce terme est principalement utilisé dans des contextes académiques et de recherche, donc il est plus fréquent dans des écrits spécialisés que dans des conversations ordinaires.
Fréquence d'utilisation : Ce terme est assez niche et principalement utilisé dans des contextes écrits tels que des articles de recherche(mathématique) et des thèses.
"La cochaîne globalement finie donne lieu à une classe de cohomologie bien définie."
"In the study of algebraic topology, the globally finite cochain plays a critical role."
"Dans l'étude de la topologie algébrique, la cochaîne globalement finie joue un rôle crucial."
"Researchers are interested in properties of globally finite cochains to understand their applications."
Ce terme en lui-même n'est pas fréquemment associé à des expressions idiomatiques spécifiques. Cependant, dans le cadre de la théorie des cochaînes et la topologie, des phrases variées peuvent lui être associées pour décrire des concepts plus larges, bien que ce soit assez spécialisé. Voici quelques expressions possibles :
"Une cochaîne globalement finie indique la stabilité dans les aspects cohomologiques."
"The understanding of globally finite cochains is vital in modern algebraic topology."
Le mot "cochain" est dérivé du mot français "chaîne", utilisé dans le contexte mathématique pour décrire une chaîne (ou suite) d'éléments, avec le préfixe "co-" qui est souvent utilisé pour indiquer un dual ou une relation complémentaire. Le mot "global" provient du latin "globalis", signifiant "de la sphère entière".
L'utilisation de "globally finite cochain" est un concept spécifique aux domaines mathématiques avancés et requiert une bonne compréhension des concepts de topologie et d'algèbre.