(g,K)-module - definizione. Che cos'è (g,K)-module
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è (g,K)-module - definizione


(g,K)-module         
ALGEBRAIC OBJECT
In mathematics, more specifically in the representation theory of reductive Lie groups, a (\mathfrak{g},K)-module is an algebraic object, first introduced by Harish-Chandra,Page 73 of used to deal with continuous infinite-dimensional representations using algebraic techniques. Harish-Chandra showed that the study of irreducible unitary representations of a real reductive Lie group, G, could be reduced to the study of irreducible (\mathfrak{g},K)-modules, where \mathfrak{g} is the Lie algebra of G and K is a maximal compact subgroup of G.
Module (mathematics)         
GENERALIZATION OF VECTOR SPACE, WITH SCALARS IN A RING INSTEAD OF A FIELD
Module (algebra); Submodule; Module theory; Submodules; R-module; Module over a ring; Left module; Module Theory; Unital module; Module (ring theory); Right module; Left-module; Module mathematics; Ring action; Z-module; ℤ-module
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of module generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers.
Dualizing module         
In abstract algebra, a dualizing module, also called a canonical module, is a module over a commutative ring that is analogous to the canonical bundle of a smooth variety. It is used in Grothendieck local duality.

Wikipedia

(g,K)-module
In mathematics, more specifically in the representation theory of reductive Lie groups, a (\mathfrak{g},K)-module is an algebraic object, first introduced by Harish-Chandra,Page 73 of used to deal with continuous infinite-dimensional representations using algebraic techniques. Harish-Chandra showed that the study of irreducible unitary representations of a real reductive Lie group, G, could be reduced to the study of irreducible (\mathfrak{g},K)-modules, where \mathfrak{g} is the Lie algebra of G and K is a maximal compact subgroup of G.