8 queens puzzle - definizione. Che cos'è 8 queens puzzle
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è 8 queens puzzle - definizione

MATHEMATICAL CHESS PROBLEM OF PLACING EIGHT CHESS QUEENS ON AN 8×8 CHESSBOARD SO THAT NO TWO QUEENS THREATEN EACH OTHER
8 queens problem; 8 queens puzzle; Eight queens problem; 8 queens; N-queens problem; N queens puzzle; N-queens; Eight-queens problem; N queens; N queens problem; Chessboard quiz; Eight queens; Queens problem; Eight queen problem; 8-Queens Problem; N Queens; Nqueens; Queen's independence problem; Eight-queens puzzle; N-Queens problem; Eight Queens puzzle; N-Queens; 8-queens
  • min-conflicts]] solution to 8 queens

8 queens puzzle         
Eight queens puzzle         
The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions.
eight queens problem         

Wikipedia

Eight queens puzzle

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens threaten each other; thus, a solution requires that no two queens share the same row, column, or diagonal. There are 92 solutions. The problem was first posed in the mid-19th century. In the modern era, it is often used as an example problem for various computer programming techniques.

The eight queens puzzle is a special case of the more general n queens problem of placing n non-attacking queens on an n×n chessboard. Solutions exist for all natural numbers n with the exception of n = 2 and n = 3. Although the exact number of solutions is only known for n ≤ 27, the asymptotic growth rate of the number of solutions is approximately (0.143 n)n.