distributive lattice - definizione. Che cos'è distributive lattice
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è distributive lattice - definizione


Distributive lattice         
  • Free distributive lattices on zero, one, two, and three generators. The elements labeled "0" and "1" are the empty join and meet, and the element labeled "majority" is (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z'') ∨ (''y'' ∧ ''z'') = (''x'' ∨ ''y'') ∧ (''x'' ∨ ''z'') ∧ (''y'' ∨ ''z'').
  • Distributive lattice which contains N5 (solid lines, left) and M3 (right) as sub''set'', but not as sub''lattice''
  • [[Young's lattice]]
LATTICE IN WHICH THE OPERATIONS OF JOIN AND MEET DISTRIBUTE OVER EACH OTHER
Distribute lattice; Distributive lattice/Proofs; Free distributive lattice
In mathematics, a distributive lattice is a lattice in which the operations of join and meet distribute over each other. The prototypical examples of such structures are collections of sets for which the lattice operations can be given by set union and intersection.
distributive lattice         
  • Free distributive lattices on zero, one, two, and three generators. The elements labeled "0" and "1" are the empty join and meet, and the element labeled "majority" is (''x'' ∧ ''y'') ∨ (''x'' ∧ ''z'') ∨ (''y'' ∧ ''z'') = (''x'' ∨ ''y'') ∧ (''x'' ∨ ''z'') ∧ (''y'' ∨ ''z'').
  • Distributive lattice which contains N5 (solid lines, left) and M3 (right) as sub''set'', but not as sub''lattice''
  • [[Young's lattice]]
LATTICE IN WHICH THE OPERATIONS OF JOIN AND MEET DISTRIBUTE OVER EACH OTHER
Distribute lattice; Distributive lattice/Proofs; Free distributive lattice
<theory> A lattice for which the least upper bound (lub) and greatest lower bound (glb) operators distribute over one another so that a lub (b glb c) == (a lub c) glb (a lub b) and vice versa. ("lub" and "glb" are written in LateX as sqcup and sqcap). (1998-11-09)
Duality theory for distributive lattices         
In mathematics, duality theory for distributive lattices provides three different (but closely related) representations of bounded distributive lattices via Priestley spaces, spectral spaces, and pairwise Stone spaces. This duality, which is originally also due to Marshall H.