subspaces - definizione. Che cos'è subspaces
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è subspaces - definizione

MATRIX WITH A SPECIFIC RELATION TO ITS CHARACTERISTIC POLYNOMIAL P
Theorem about cyclic subspaces; Companion form; Companion matrices

Decoherence-free subspaces         
SUBSPACE OF A SYSTEM'S HILBERT SPACE WHERE THE SYSTEM IS DECOUPLED FROM THE ENVIRONMENT
Decoherence-Free Subspaces
A decoherence-free subspace (DFS) is a subspace of a quantum system's Hilbert space that is invariant to non-unitary dynamics. Alternatively stated, they are a small section of the system Hilbert space where the system is decoupled from the environment and thus its evolution is completely unitary.
subspace         
WIKIMEDIA DISAMBIGUATION PAGE
SubSpace; Sub space; Subspace (disambiguation)
The mental state reached by a masochist during a particularly rewarding beating.
She stopped screaming, and a smile came over her face, she was now in deep subspace..
subspace         
WIKIMEDIA DISAMBIGUATION PAGE
SubSpace; Sub space; Subspace (disambiguation)
¦ noun
1. Mathematics a space that is wholly contained in another space.
2. (in science fiction) a hypothetical space-time continuum used for communication at a speed faster than that of light.

Wikipedia

Companion matrix

In linear algebra, the Frobenius companion matrix of the monic polynomial

p ( t ) = c 0 + c 1 t + + c n 1 t n 1 + t n   , {\displaystyle p(t)=c_{0}+c_{1}t+\cdots +c_{n-1}t^{n-1}+t^{n}~,}

is the square matrix defined as

C ( p ) = [ 0 0 0 c 0 1 0 0 c 1 0 1 0 c 2 0 0 1 c n 1 ] {\displaystyle C(p)={\begin{bmatrix}0&0&\dots &0&-c_{0}\\1&0&\dots &0&-c_{1}\\0&1&\dots &0&-c_{2}\\\vdots &\vdots &\ddots &\vdots &\vdots \\0&0&\dots &1&-c_{n-1}\end{bmatrix}}} .

Some authors use the transpose of this matrix, which (dually) cycles coordinates, and is more convenient for some purposes, like linear recurrence relations.