supplement of an angle - definizione. Che cos'è supplement of an angle
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è supplement of an angle - definizione

CONSTRUCTION OF AN ANGLE EQUAL TO ONE THIRD A GIVEN ANGLE
Trisecting the angle; Trisection of an angle; Trisection of the angle; Trisecting an angle; Trisecting angles; Trisection; Trisection of angle; Trisection of any angle; Trisecting an arbitrary angle; Trisections of an angle; Trisect every angle; Trisect any angle; Trisect an angle; Trisect angles; Trisect an arbitrary angle; Trisected angle; Angle trisector; Trisect; Trisecting the Angle; Trisect the angle
  • Bieberbach's trisection of an angle (in blue) by means of a right triangular ruler (in red)
  • p. 186}}
  • left
  • Sylvester's Link Fan
  • A tomahawk trisecting an angle. The tomahawk is formed by the thick lines and the shaded semicircle.
  • Trisection of the angle using marked ruler
  • left

Trisect         
·vt To cut or divide into three parts.
II. Trisect ·vt To cut or divide into three equal parts.
trisect         
[tr??'s?kt]
¦ verb divide into three parts.
Derivatives
trisection noun
trisector noun
Origin
C17: from tri- + L. sect-, secare 'divide, cut'.
Trisection         
·noun The division of a thing into three parts, Specifically: (Geom.) the division of an angle into three equal parts.

Wikipedia

Angle trisection

Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge and a compass.

In 1837, Pierre Wantzel proved that the problem, as stated, is impossible to solve for arbitrary angles. However, some special angles can be trisected: for example, it is trivial to trisect a right angle (that is, to construct an angle of 30 degrees).

It is possible to trisect an arbitrary angle by using tools other than straightedge and compass. For example, neusis construction, also known to ancient Greeks, involves simultaneous sliding and rotation of a marked straightedge, which cannot be achieved with the original tools. Other techniques were developed by mathematicians over the centuries.

Because it is defined in simple terms, but complex to prove unsolvable, the problem of angle trisection is a frequent subject of pseudomathematical attempts at solution by naive enthusiasts. These "solutions" often involve mistaken interpretations of the rules, or are simply incorrect.