recursion$94738$ - traduzione in greco
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

recursion$94738$ - traduzione in greco

Alpha recursion; Α-recursion theory

recursion      
n. αναδρομή
well founded         
TYPE OF BINARY RELATION
Well-founded set; Well-founded; Wellfounded; Well-foundedness; Well-founded order; Well-founded induction; Well-founded relations; Wellfounded relation; Noetherian induction; Hereditarily well-founded set; Well-founded recursion; Wellfounded recursion; Noetherian recursion; Wellfounded induction; Wellfoundedness; Noetherian relation; Well founded; Foundational relation
βάσιμος
endless loop         
  • A [[blue screen of death]] on [[Windows XP]]. "The [[device driver]] got stuck in an infinite loop."
PROGRAMMING IDIOM
Endless loop; Loop, Infinite; Infinite Loops; Infinite recursion; Neverending Loop; Alderson loop; While(true); While (true); While (True); While(True); While(TRUE); While (TRUE); While (1); While(1); For(;;); For (;;); Tight loops; Tight Loops; Tight Loop; Never ending loop; Infinite loops; Infinite Loop; Endless Loop (computing); Infinity loop; Unproductive loop; Infinite iteration; Unconditional loop; Unconditional loops; Endless loops
ατέρμων βρόχος

Definizione

tail recursion
<programming> When the last thing a function (or procedure) does is to call itself. Such a function is called tail recursive. A function may make several recursive calls but a call is only tail-recursive if the caller returns immediately after it. E.g. f n = if n < 2 then 1 else f (f (n-2) + 1) In this example both calls to f are recursive but only the outer one is tail recursive. Tail recursion is a useful property because it enables {tail recursion optimisation}. If you aren't sick of them already, see recursion and {tail recursion}. [Jargon File] (2006-04-16)

Wikipedia

Alpha recursion theory

In recursion theory, α recursion theory is a generalisation of recursion theory to subsets of admissible ordinals α {\displaystyle \alpha } . An admissible set is closed under Σ 1 ( L α ) {\displaystyle \Sigma _{1}(L_{\alpha })} functions, where L ξ {\displaystyle L_{\xi }} denotes a rank of Godel's constructible hierarchy. α {\displaystyle \alpha } is an admissible ordinal if L α {\displaystyle L_{\alpha }} is a model of Kripke–Platek set theory. In what follows α {\displaystyle \alpha } is considered to be fixed.

The objects of study in α {\displaystyle \alpha } recursion are subsets of α {\displaystyle \alpha } . These sets are said to have some properties:

  • A set A α {\displaystyle A\subseteq \alpha } is said to be α {\displaystyle \alpha } -recursively-enumerable if it is Σ 1 {\displaystyle \Sigma _{1}} definable over L α {\displaystyle L_{\alpha }} , possibly with parameters from L α {\displaystyle L_{\alpha }} in the definition.
  • A is α {\displaystyle \alpha } -recursive if both A and α A {\displaystyle \alpha \setminus A} (its relative complement in α {\displaystyle \alpha } ) are α {\displaystyle \alpha } -recursively-enumerable. It's of note that α {\displaystyle \alpha } -recursive sets are members of L α + 1 {\displaystyle L_{\alpha +1}} by definition of L {\displaystyle L} .
  • Members of L α {\displaystyle L_{\alpha }} are called α {\displaystyle \alpha } -finite and play a similar role to the finite numbers in classical recursion theory.
  • Members of L α + 1 {\displaystyle L_{\alpha +1}} are called α {\displaystyle \alpha } -arithmetic.

There are also some similar definitions for functions mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } :

  • A function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -recursively-enumerable, or α {\displaystyle \alpha } -partial recursive, iff its graph is Σ 1 {\displaystyle \Sigma _{1}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .
  • A function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -recursive iff its graph is Δ 1 {\displaystyle \Delta _{1}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .
  • Additionally, a function mapping α {\displaystyle \alpha } to α {\displaystyle \alpha } is α {\displaystyle \alpha } -arithmetical iff there exists some n ω {\displaystyle n\in \omega } such that the function's graph is Σ n {\displaystyle \Sigma _{n}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} .

Additional connections between recursion theory and α recursion theory can be drawn, although explicit definitions may not have yet been written to formalize them:

  • The functions Δ 0 {\displaystyle \Delta _{0}} -definable in ( L α , ) {\displaystyle (L_{\alpha },\in )} play a role similar to those of the primitive recursive functions.

We say R is a reduction procedure if it is α {\displaystyle \alpha } recursively enumerable and every member of R is of the form H , J , K {\displaystyle \langle H,J,K\rangle } where H, J, K are all α-finite.

A is said to be α-recursive in B if there exist R 0 , R 1 {\displaystyle R_{0},R_{1}} reduction procedures such that:

K A H : J : [ H , J , K R 0 H B J α / B ] , {\displaystyle K\subseteq A\leftrightarrow \exists H:\exists J:[\langle H,J,K\rangle \in R_{0}\wedge H\subseteq B\wedge J\subseteq \alpha /B],}
K α / A H : J : [ H , J , K R 1 H B J α / B ] . {\displaystyle K\subseteq \alpha /A\leftrightarrow \exists H:\exists J:[\langle H,J,K\rangle \in R_{1}\wedge H\subseteq B\wedge J\subseteq \alpha /B].}

If A is recursive in B this is written A α B {\displaystyle \scriptstyle A\leq _{\alpha }B} . By this definition A is recursive in {\displaystyle \scriptstyle \varnothing } (the empty set) if and only if A is recursive. However A being recursive in B is not equivalent to A being Σ 1 ( L α [ B ] ) {\displaystyle \Sigma _{1}(L_{\alpha }[B])} .

We say A is regular if β α : A β L α {\displaystyle \forall \beta \in \alpha :A\cap \beta \in L_{\alpha }} or in other words if every initial portion of A is α-finite.